First determine what the region will look like. This is shown in the image below.
We know that the volume is given by the approximation
\begin{equation*}
V\approx \sum_{i=1}^3\sum_{j=1}^3 f(x_{ij},y_{ij})\Delta x\Delta y
\end{equation*}
which can be rewritten (without sigma notation) as
\begin{equation*}
V\approx f(1,1)\Delta x\Delta y + f(1,2)\Delta x\Delta y + f(1,3)\Delta x\Delta y + f(2,1)\Delta x\Delta y + f(2,2)\Delta x\Delta y + f(2,3)\Delta x\Delta y + f(3,1)\Delta x\Delta y + f(3,2)\Delta x\Delta y + f(3,3)\Delta x\Delta y
\end{equation*}
since \(\Delta x = \dfrac{3-0}{3} = 1\) and \(\Delta y = \dfrac{3-0}{3} = 1\text{,}\) \(\Delta x\Delta y = (1)(1) = 1\text{.}\) This means the computation simplifies to
\begin{equation*}
V\approx f(1,1)(1) + f(1,2)(1) + f(1,3)(1) + f(2,1)(1) + f(2,2)(1) + f(2,3)(1) + f(3,1)(1) + f(3,2)(1) + f(3,3)(1)
\end{equation*}
Computing the values at the given points and substituting gives
\begin{equation*}
V\approx (1)(1) + (5)(1) + (10)(1) + (5)(1) + (8)(1) + (13)(1) + (10)(1) + (13)(1) + (18)(1)
\end{equation*}
so that we have \(V\approx 84\)