Skip to main content ☰ Contents You! < Prev ^ Up Next > \( \newcommand{\ds}{\displaystyle}
\newcommand{\lrpar}[1]{\left(#1\right)}
\newcommand{\lrbrace}[1]{\left\lbrace #1 \right\rbrace}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\dc}{^\circ}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.4 Indefinite Integrals & the Net Change Theorem
Objectives
Explain what is meant by an indefinite integral and use proper notation for definite/indefinite integrals
Use the Net Change Theorem to interpret definite integrals arising from real-world contexts, including finding distance traveled or displacement
Subsection 4.4.1 Before Class
https://mymedia.ou.edu/media/4.4-1/1_zny56xxk
Figure 42. Pre-Class Video 1
Subsubsection 4.4.1.1 Indefinite Integrals
Definition 4.4.1 . Indefinite Integral.
The indefinite integral is a family of functions \(F(x)\) such that \(F'(x) = f(x)\) or \(\ds \int f(x)\, dx = F(x)\)
Example 4.4.2 .
Write the indefinite integral for \(\ds \int x^2\, dx\)
Solution . \(\ds \int x^2\, dx = \dfrac{1}{3}x^3 + C\)
Question 4.4.3 .
Give an explicit distinction between the definite integral and the indefinite integral.
Solution . The definite integral always returns a number while the indefinite integral always returns a function.
Useful Indefinite Integrals.
Function
Indefinite Integral
Function
Indefinite Integral
\(\ds \int c\cdot f(x)\, dx\)
\(c\cdot F(x) +C\)
\(\ds \int [f(x)\pm g(x)]\, dx\)
\(F(x) + G(x) + C\)
\(\ds \int k\, dx\)
\(kx + C\)
\(\ds \int x^n\, dx\)
\(\dfrac{x^{n+1}}{n+1} + C\)
\(\ds \sin x\, dx\)
\(-\cos x + C\)
\(\ds \int \cos x\, dx\)
\(\sin x + C\)
\(\ds \int \sec^2 x\, dx\)
\(\tan x + C\)
\(\ds \int \csc^2 x\, dx\)
\(-\cot x + C\)
\(\ds \int \sec x \tan x\, dx\)
\(\sec x + C\)
\(\ds \int \csc x\cot x\, dx\)
\(-\csc x + C\)
Example 4.4.4 .
Find the general indefinite integral for \(f(x) = 3x^5-2\csc^2 x\)
Solution . \(\ds \int f(x)\, dx = \dfrac{1}{2}x^6 + 2\cot x + C\)
Example 4.4.5 .
Evaluate \(\ds \int \dfrac{\sin\theta}{\cos^2\theta}\,d\theta\)
Solution . \(\ds \int \dfrac{\sin\theta}{\cos^2\theta}\,d\theta = \sec\theta + C\)
Example 4.4.6 .
Evaluate \(\ds \int (6-2\cos x)\, dx\)
Solution . \(\ds \int (6-2\cos x)\, dx = 6x-2\sin x + C\)
Subsection 4.4.2 Pre-Class Activities
Example 4.4.7 .
Imagine that you are able to give your future self some advice, while you’re studying. Looking back over the notes, how would you describe the difference between a definite integral and an indefinite integral to your future self?
Example 4.4.8 .
Compute the following:
\(\displaystyle \ds \int \lrpar{\cos x + \dfrac{1}{3}x}\, dx\)
\(\displaystyle \ds \int \lrpar{1-x^2}^2\, dx\)
\(\displaystyle \ds \int_1^2 \lrpar{4x^3 - 3x^2 + 2x}\, dx\)
Solution .
\(\displaystyle \sin x + \dfrac{1}{6}x^2 + C\)
\(\displaystyle x-\dfrac{2}{3}x^3 +\dfrac{1}{5}x^5 + C\)
\(\displaystyle 11\)
Subsection 4.4.3 In Class
Subsubsection 4.4.3.1 The Net Change Theorem
Question 4.4.9 .
In Section 4.1, how did we find the accumulated change of a function? Give an real-world example of how those techniques would be used.
In Section 4.3, we learned the Fundamental Theorem of Calculus. Rewrite FTC 2 here.
Solution .
Answers vary
If \(f(x)\) is continuous on \([a,b]\) and \(F(x)\) is an antiderivative of \(f(x)\) on that interval, then \(\ds \int_a^b f(x)\, dx = F(b) - F(a)\)
Theorem 4.4.10 . Net Change.
The integral of a rate of change is the net change, i.e.: \(\ds \int_a^b F'(x)\, dx = F(b) - F(a)\)
Question 4.4.11 .
What relationship(s) do you see between the Net Change Theorem and FTC 2?
Solution . We get the same result, but we are using different functions.
Displacement/Distance.
When talking about physical situations, the displacement of a particle is the net change of the particle’s position, and the distance is the total change of the particle’s position.
Example 4.4.12 .
A particle moves along a line so that its velocity at time \(t\) is \(v(t) = t^2-t-6\) m/s.
Find the displacement of the particle during the time period \(1\leq t\leq 4\)
Find the distance traveled during this time period.
Solution .
\(-\dfrac{9}{2}\) m
\(\dfrac{61}{6}\) m
Example 4.4.13 .
A particle moving along a line has velocity \(v(t) = t^2 -2t-3\) m/s. Find the displacement and the total distance traveled by the particle between 1 and 4 seconds.
Solution . The displacement is \(-3\) m and the distance traveled is \(\dfrac{23}{3}\) m
Subsubsection 4.4.3.2 Practice
Example 4.4.14 .
Find the general indefinite integral of \(f(x) = x^{1.3}-7x^{2.5}\)
Solution . \(\ds \int f(x)\, dx = \dfrac{x^{2.3}}{2.3} - 2x^{3.5} + C\)
Example 4.4.15 .
Find the general indefinite integral of \(f(x) = \sqrt[5]{x^4}\)
Solution . \(\ds \int f(x)\, dx = \dfrac{5}{9} x^{9/5} + C\)
Example 4.4.16 .
Find the general indefinite integral of \(f(x) = \dfrac{1-\sqrt{x}+x}{\sqrt{x}}\)
Solution . \(\ds \int f(x)\, dx = 2x^{1/2} + \dfrac{2}{3}x^{3/2} + C\)
Example 4.4.17 .
Find the general indefinite integral of \(f(x) = 2+\tan^2x\)
Solution . \(\ds \int f(x)\, dx = x + \tan x + C\)
Example 4.4.18 .
Find the general indefinite integral of \(f(t) = \dfrac{1-\sin^3t}{\sin^2t}\)
Solution . \(\ds \int f(t)\, dt = -\cot t + \cos t + C\)
Example 4.4.19 .
Evaluate the integral \(\ds \int_{-2}^3 (x^2-3)\, dx\)
Solution . \(\ds \int_{-2}^3 (x^2-3)\, dx = -\dfrac{10}{3}\)
Example 4.4.20 .
Evaluate the integral \(\ds \int_0^3 (1 + 6w^2-10w^4)\,dw\)
Solution . \(\ds \int_0^3 (1 + 6w^2-10w^4)\,dw = -429\)
Example 4.4.21 .
Evaluate the integral \(\ds \int_0^\pi (4\sin \theta -3\cos\theta)\, d\theta\)
Solution . \(\ds \int_0^\pi (4\sin \theta -3\cos\theta)\, d\theta =8\)
Example 4.4.22 .
Evaluate the integral \(\ds \int_0^{\pi/3} \dfrac{\sin\theta + \sin\theta\tan^2\theta}{\sec^2\theta}\,d\theta\)
Solution . \(\ds \int_0^{\pi/3} \dfrac{\sin\theta + \sin\theta\tan^2\theta}{\sec^2\theta}\,d\theta = \dfrac{1}{2}\)
Example 4.4.23 .
Evaluate the integral \(\ds \int_1^8 \dfrac{2+t}{\sqrt[3]{t^2}}\)
Solution . \(\ds \int_1^8 \dfrac{2+t}{\sqrt[3]{t^2}} = \dfrac{69}{4}\)
Example 4.4.24 .
A honeybee population starts with 100 bees and increases at a rate of \(n'(t)\) bees per week. What does 100 + \(\ds \int_0^{15}n'(t)\,dt/\) represent?
Solution . It gives the total number of bees after 15 weeks.
Example 4.4.25 .
If \(x\) is measured in meters and \(f(x)\) is measured in newtons, what are the units of \(\ds \int_0^{100}f(x)\,dx\text{?}\)
Example 4.4.26 .
The acceleration function of a particle is \(a(t) = t+4\) m/s\(^2\text{,}\) and its the initial velocity is 5 m/s. Find the velocity at time \(t\text{,}\) and the distance traveled between time \(t = 0\) and \(t = 5\text{.}\)
Solution . The velocity is \(v(t) = \dfrac{1}{2}t^2 + 4t + 8\) and the particle travels \(\dfrac{665}{6}\) m.
Subsection 4.4.4 After Class Activities
Example 4.4.27 .
Let \(r(\theta) = \dfrac{1+\cos^2\theta}{\cos^2\theta}\text{.}\) Find the indefinite integral \(\ds \int r(\theta)\, d\theta\) and the definite integral on the interval \([0,\pi/4]\text{.}\)
Solution .
\(\ds \int r(\theta)\, d\theta = \tan \theta + \theta + C\) and \(\ds \int_0^{\pi/4} r(\theta)\, d\theta = 1 + \dfrac{\pi}{4}\)
Example 4.4.28 .
If \(f(x)\) is the slope of a trail at a distance of \(x\) miles from the start of the trail, what does \(\ds \int_3^5 f(x)\, dx\) represent?
Solution . The net change in height between 3 and 5 miles from the start of the trail.
Example 4.4.29 .
The current in a wire is defined to be the derivative of charge, i.e. \(I(t) = Q'(t)\text{.}\) What does \(\ds \int_a^b I(t)\, dt\) represent?
Solution . The net change in charge between \(t=a\) and \(t=b\)
Example 4.4.30 .
A particle moving along a line has acceleration given by \(a(t) = 2t+3\text{.}\) If \(v(0) = -4\text{,}\) find the particle’s velocity and distance traveled in the first three seconds of motion.
Solution .
\(v(t) = t^2 + 3t-4\) and the distance traveled is \(\dfrac{89}{6}\text{.}\)