First,
\begin{equation*}
\Delta x = \dfrac{b-a}{n}\dfrac{1}{n}
\end{equation*}
Now, to find
\(f(x_i)\text{,}\) write
\(x_i\) as
\begin{equation*}
x_i= i\Delta x = \dfrac{i}{n}
\end{equation*}
This means that
\begin{equation*}
f(x_i) = \lrpar{\dfrac{i}{n}}^2 = \dfrac{i^2}{n^2}
\end{equation*}
So, the area of a single rectangle can be expressed as
\begin{equation*}
f(x_i)\Delta x = \lrpar{\dfrac{i}{n}}^2\cdot \dfrac{i}{n} = \dfrac{i^2}{n^3}
\end{equation*}
To find the area of a finite number of rectangles, we add these single rectangles:
\begin{equation*}
L_n = \ds \sum_{i=0}^{n-1} f(x_i)\Delta x = \sum_{i=1}^n \dfrac{(i-1)^2}{n^3}
\end{equation*}
Since the summation is over the variable
\(i\text{,}\) we can use the formula
\(\ds \sum_{i=1}^n i^2 = \dfrac{n(n+1)(2n+1)}{6}\) to get
\begin{equation*}
L_n = \ds \sum_{i=1}^n \dfrac{(i-1)^2}{n^3} = \dfrac{1}{n^3}\sum_{i=1}^n i^2-2i+1 = \dfrac{1}{n^3}\cdot \lrpar{\dfrac{n(n+1)(2n+1)}{6}- n(n+1) + 1}
\end{equation*}
Now, the area under the curve is found by taking infinitely many rectangles in the approximation. The way we can do that is by taking a limit:
\begin{equation*}
A = \ds \lim_{n\to \infty} L_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i)\Delta x = \lim_{n\to\infty} \dfrac{1}{n^3}\cdot \lrpar{\dfrac{n(n+1)(2n+1)}{6}- n(n+1) + 1} = \dfrac{1}{3}
\end{equation*}
So we conclude the area is precisely
\(\dfrac{1}{3}\)