Skip to main content ☰ Contents You! < Prev ^ Up Next > \( \newcommand{\ds}{\displaystyle}
\newcommand{\lrpar}[1]{\left(#1\right)}
\newcommand{\lrbrace}[1]{\left\lbrace #1 \right\rbrace}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\dc}{^\circ}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.1 Integration by Parts
Objectives
Subsection 7.1.2 Pre-Class Activities
Example 7.1.8 .
What questions/concerns do you have from the videos?
Example 7.1.9 .
The following problems require integration by parts to solve. For each, answer why integration by parts is necessary, and then compute the integral.
\(\displaystyle \ds \int x\sin 3x\, dx\)
\(\displaystyle \ds \int (x-1)\sin (\pi x)\, dx\)
\(\displaystyle \ds \int xe^{2x}\, dx\)
Solution .
\(\ds \int x\sin 3x\, dx = -\dfrac{1}{3}x\cos 3x - \dfrac{1}{9}\cos 3x + C\)
The integrand is a product function, and we don’t have a derivative rule to take care of that type of integrand.
\(\ds \int (x-1)\sin (\pi x)\, dx = -\dfrac{1}{\pi}(x-1)\cos \pi x + \dfrac{1}{\pi^2}\sin \pi x + C\)
The integrand is a product function, and we don’t have a derivative rule to take care of that type of integrand.
\(\ds \int xe^{2x}\, dx = \dfrac{1}{2}xe^{2x} - \dfrac{1}{4}e^{2x} + C\)
The integrand is a product function, and we don’t have a derivative rule to take care of that type of integrand.
Subsection 7.1.3 In Class
Subsubsection 7.1.3.1 Examples
Example 7.1.10 .
Show that \(\ds \int_0^1 \inv{\tan}(x)\, dx = \dfrac{\pi}{4} - \dfrac{\ln 2}{2}\)
Solution .
Set \(u = \arctan x\) and \(dv = dx\text{.}\) Then, \(du = \dfrac{1}{1+x^2}\, dx\) and \(v = x\) and we have
\begin{equation*}
\ds \int_0^1 \inv{\tan}(x)\, dx = x\arctan x \bigg\rvert_0^1 - \int_0^1 \dfrac{x}{x^2+1}\, dx
\end{equation*}
For the integral, use a substitution: \(u = 1+x^2\text{,}\) so \(du = 2x\, dx\text{.}\) Changing the bounds, we see that \(x=0\to u = 1\) and \(x=1\to u=2\text{;}\) then,
\begin{align*}
\ds \int_0^1 \inv{\tan}(x)\, dx \amp = x\arctan x \bigg\rvert_0^1 - \int_0^1 \dfrac{x}{x^2+1}\, dx\\
\amp = x\arctan x \bigg\rvert_0^1 - \dfrac{1}{2}\int_1^2 \dfrac{1}{u}\, du\\
\amp = x\arctan x \bigg\rvert_0^1 - \dfrac{1}{2}\ln u\bigg\rvert_1^2\\
\amp = \dfrac{\pi}{4} - \dfrac{1}{2}\ln 2
\end{align*}
Example 7.1.11 .
Prove that \(\ds \int \sin^n x\, dx = -\dfrac{1}{n}\cos x \sin^{n-1}x + \dfrac{n-1}{n}\int \sin^{n-2}x\, dx\)
Solution .
Write the integrand as \(\sin^nx = \sin x\cdot \sin^{n-1}x\text{.}\) Now we have an integral patterned to use integration by parts; set \(u = \sin^{n-1}x\) and \(dv = \sin x\, dx\text{.}\) Then, \(du = (n-1)\cos^{n-2}x\, dx\) and \(v = -\cos x\text{.}\) So, we have
\begin{align*}
\ds \int \sin^nx\, dx \amp = \int \sin x\cdot \sin^{n-1}x\, dx\\
\amp = \ds -\sin^{n-1}x\cos x + \int (n-1)\sin^{n-2}x\cos^2 x\, dx \\
\amp = \ds -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x(1-\sin^2 x)\,dx\\
\amp = \ds -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x\, dx - (n-1)\int \sin^nx\, dx
\end{align*}
Combining like terms and dividing, we have
\begin{align*}
\ds n\int \sin^nx\, dx \amp = -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x\, dx\\
\ds \int \sin^nx\, dx \amp = -\dfrac{1}{n}\cos x\sin^{n-1}x + \dfrac{n-1}{n}\int \sin^{n-2}x\, dx
\end{align*}
Example 7.1.12 .
Compute the integrals:
\(\displaystyle \ds \int \dfrac{z}{10^z}\, dz\)
\(\displaystyle \ds \int e^{-\theta}\cos 2\theta\, d\theta\)
\(\displaystyle \ds \int_0^{1/2} w\cos \pi w \, dw\)
\(\displaystyle \ds \int_1^{\sqrt{3}} \arctan\lrpar{\dfrac{1}{y}}\, dy\)
\(\displaystyle \ds \int_1^2 \dfrac{(\ln x)^2}{x^3}\, dx\)
\(\displaystyle \ds \int_0^{\pi/3} \sin x\ln (\cos x)\, dx\)
Solution .
\(\displaystyle \ds \int \dfrac{z}{10^z}\, dz = -\dfrac{1}{\ln 10}z\cdot 10^{-z} - \dfrac{1}{(\ln 10)^2}\cdot 10^{-z} + C\)
\(\displaystyle \ds \int e^{-\theta}\cos 2\theta\, d\theta = \dfrac{4}{5}\lrpar{\dfrac{1}{2}e^{-\theta}\sin 2\theta - \dfrac{1}{4}e^{-\theta}\cos 2\theta} + C\)
\(\displaystyle \ds \int_0^{1/2} w\cos \pi w \, dw = \dfrac{1}{2\pi} - \dfrac{1}{\pi^2}\)
\(\displaystyle \ds \int_1^{\sqrt{3}} \arctan\lrpar{\dfrac{1}{y}}\, dy = \dfrac{\pi\sqrt{3}}{6} -\dfrac{\pi}{4} + \ln(\sqrt{2})\)
\(\displaystyle \ds \int_1^2 \dfrac{(\ln x)^2}{x^3}\, dx = -\dfrac{1}{8}(\ln 2)^2 - \dfrac{1}{8}\ln 2 + \dfrac{3}{16}\)
\(\displaystyle \ds \int_0^{\pi/3} \sin x\ln (\cos x)\, dx = \ln(\sqrt{2}) - \dfrac{1}{2}\)
Example 7.1.13 .
Evaluate \(\ds \int \cos (\ln x)\, dx\)
Solution . \(\ds \int \cos (\ln x)\, dx = \dfrac{1}{2}\lrpar{x\cos (\ln x) + x\sin (\ln x)} + C\)
Example 7.1.14 .
Find \(\ds \int_0^\pi e^{\cos t}\sin 2t\, dt\)
Solution . \(\ds \int_0^\pi e^{\cos t}\sin 2t\, dt = \dfrac{4}{e}\)
Subsection 7.1.4 After Class Activities
Example 7.1.15 .
Evaluate \(\ds \int e^{\sqrt{x}}\, dx\)
Solution . \(\ds \int e^{\sqrt{x}}\, dx = 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + C\)
Example 7.1.16 .
Evaluate \(\ds \int_1^2 x^4 (\ln x)^2\, dx\)
Solution . Evaluate \(\ds \int_1^2 x^4 (\ln x)^2\, dx = \dfrac{1}{5}(\ln 2)^2 - \dfrac{64}{25}\ln 2 + \dfrac{62}{125}\)
Example 7.1.17 .
Find \(\ds \int (\arcsin x)^2\, dx\)
Solution . \(\ds \int (\arcsin x)^2\, dx = x\arcsin x + \sqrt{1-x^2} + C\)
Example 7.1.18 .
Evaluate \(\ds \int \ln (\sqrt{x})\, dx\)
Solution . \(\ds \int \ln (\sqrt{x})\, dx = x\ln (\sqrt{x}) - \dfrac{1}{2}x + C\)
Example 7.1.19 .
Prove the reduction formula: \(\ds \int (\ln x)^n\, dx = x(\ln x)^n - n\int (\ln x)^{n-1}\, dx\)
Solution .
Let \(u = (\ln x)^n\) and \(dv = dx\text{.}\) Then, \(du = n(\ln x)^{n-1}\, dx\) and \(v = x\text{.}\) Using integration by parts, we have
\begin{equation*}
\ds \int (\ln x)^n\, dx = x(\ln x)^n - n\int (\ln x)^{n-1}\, dx
\end{equation*}