Skip to main content

Section 7.4 Integration of Rational Functions by Partial Fractions

Subsection 7.4.1 Before Class

https://mymedia.ou.edu/media/7.4-1/1_otoe669b
Figure 63. Pre-Class Video 1
https://mymedia.ou.edu/media/7.4-2/1_60i4tlqf
Figure 64. Pre-Class Video 2

Subsubsection 7.4.1.1 Distinct Linear Factors

Example 7.4.1.
Find \(\ds \int\dfrac{1}{x^2-6x-7}\, dx\)
  1. Why can we not use any of our previous methods on this problem?
  2. Before we can solve this, think about adding the fractions \(\dfrac{1}{2} + \dfrac{1}{3}\text{.}\) What do you have to do in order to add these two fractions?
  3. How could you decompose the answer from above into two fractions? Think about part (b)...
  4. Use your thought process in part (c) to decompose \(f(x)\) into two fractions.
  5. Integrate the resulting decomposition.
Solution.
  1. No appropriate pattern
  2. You need to get a common denominator:
    \begin{equation*} \dfrac{1}{2}\cdot\lrpar{\dfrac{3}{3}} + \dfrac{1}{3}\cdot \lrpar{\dfrac{3}{3}} = \dfrac{3}{6} + \dfrac{2}{6} = \dfrac{5}{6} \end{equation*}
  3. Write \(\dfrac{5}{6} = \dfrac{A}{2} + \dfrac{B}{3}\)
  4. Write \(x^2-6x-7 =(x-7)(x+1)\text{.}\) This gives the setup
    \begin{equation*} \dfrac{1}{x^2-6x-7} = \dfrac{1}{(x-7)(x+1)} = \dfrac{A}{x-7} + \dfrac{B}{x+1} \end{equation*}
    Combining fractions we get
    \begin{equation*} \dfrac{1}{(x-7)(x+1)} = \dfrac{A(x+1) + B(x-7)}{(x-7)(x+1)} \end{equation*}
    After simplifying and matching coefficients, we have the system
    \begin{equation*} \begin{cases} A + B & = 0\\ A-7B & = 1 \end{cases} \end{equation*}
    Solving the system gives \(A = \dfrac{1}{8}\) and \(B =-\dfrac{1}{8}\text{,}\) so that our decomposition is
    \begin{equation*} \dfrac{1}{(x-7)(x+1)} = \dfrac{1/8}{x-7} + \dfrac{-1/8}{x+1} \end{equation*}
  5. \(\displaystyle \ds \int \dfrac{1}{x^2-6x-7}\, dx = \int \dfrac{1/8}{x-7} + \dfrac{-1/8}{x+1}\, dx = \dfrac{1}{8}\ln |x-7| - \dfrac{1}{8}\ln |x+1| + C\)
The previous example gives us a process for integrating particular types of rational functions:
Functions With Two Distinct Linear Factors.
Let \(f(x) = \dfrac{P(x)}{Q(x)}\text{,}\) where \(\text{deg}(P) \lt \text{deg}(Q)\text{.}\) If \(Q(x)\) can be written as \(Q(x) = (x-a)(x-b)\text{,}\) then
\begin{equation*} \dfrac{P(x)}{Q(x)} = \dfrac{A}{x-a} + \dfrac{B}{x-b} \end{equation*}
Example 7.4.2.
Integrate \(\ds \int \dfrac{x^3 + x}{x-1}\, dx\)
Solution.
\(\ds \int \dfrac{x^3 + x}{x-1}\, dx = \dfrac{1}{3}x^3+\dfrac{1}{2}x^2 + 2x + 2\ln |x-1| + C\)
Example 7.4.3.
Integrate \(\ds \int \dfrac{1}{x^2-a^2}\, dx\) using the method of partial fractions.
Solution.
\(\ds \int \dfrac{1}{x^2-a^2}\, dx = \dfrac{1}{2a}\ln |x-a| - \dfrac{1}{2a}\ln |x+a| + C\)
Example 7.4.4.
Integrate \(\ds \int \dfrac{x^2+2x-1}{2x^3+3x^2-2x}\, dx\)
Solution.
\(\ds \int \dfrac{x^2+2x-1}{2x^3+3x^2-2x}\, dx = \dfrac{1}{2}\ln |x| + \dfrac{7}{6}\ln |2x-1| - \dfrac{1}{10}\ln |x+2| + C\)
The previous example allows us to generalize our boxed comment from earlier:
Functions With \(n\) Distinct Linear Factors.
Let \(f(x) = \dfrac{P(x)}{Q(x)}\text{,}\) where \(\text{deg}(P) \lt \text{deg}(Q)\text{.}\) If \(Q(x)\) can be written as
\begin{equation*} Q(x) = (x-x_1)(x-x_2)\cdots(x-x_n) \end{equation*}
where each \(x_i\) is distinct, then
\begin{equation*} \dfrac{P(x)}{Q(x)} = \dfrac{A_1}{x-x_1} + \dfrac{A_2}{x-x_2} + \cdots + \dfrac{A_n}{x-x_n} \end{equation*}

Subsection 7.4.2 Pre-Class Activities

Example 7.4.5.

Write any questions you have from the videos in this space.
Solution.
Answers vary

Example 7.4.6.

Find the general antiderivative of the function \(f(x) = \dfrac{x^4}{x-1}\)
Solution.
\(\ds \int f(x)\, dx = \dfrac{1}{4}x^4 + \dfrac{1}{3}x^3 + \dfrac{1}{2}x^2 + x - \dfrac{25}{12} + \ln |x-1| + C\)

Example 7.4.7.

Integrate \(\ds \int \dfrac{ax}{x^2-bx}\, dx\)
Solution.
\(\ds \int \dfrac{ax}{x^2-bx}\, dx = a\ln |x-b| + C\)

Example 7.4.8.

Integrate \(\ds \int \dfrac{x}{(x-1)(x+1)(2x+1)}\, dx\)
Solution.
\(\ds \int \dfrac{x}{(x-1)(x+1)(2x+1)}\, dx = \dfrac{1}{6}\ln |x-1| - \dfrac{1}{2}\ln |x+1| + \dfrac{1}{3}\ln |2x + 1| + C\)

Subsection 7.4.3 In Class

Subsubsection 7.4.3.1 Repeated Linear Factors

Example 7.4.9.
Find \(\ds \int \dfrac{x^6}{x^2-4}\, dx\)
Solution.
\(\ds \int \dfrac{x^6}{x^2-4}\, dx = \dfrac{1}{5}x^5 + \dfrac{4}{3}x^3 + 16x -16\ln |x+2| + 16 \ln |x-2| + C\)
Functions with Repeated Linear Factors.
Let \(f(x) = \dfrac{P(x)}{Q(x)}\text{,}\) where \(\text{deg}(P) \lt \text{deg}(Q)\text{.}\) If \(Q\) can be written as
\begin{equation*} Q(x) =(x-x_1)^{m_1}(x-x_2)^{m_2}\cdots (x-x_n)^{m_n} \end{equation*}
where each \(x_i\) is distinct, then
\begin{equation*} \dfrac{P(x)}{Q(x)} = \dfrac{A_1}{x-x_1} + \dfrac{A_2}{(x-x_1)^2} +\cdots + \dfrac{A_{m_1}}{(x-x_1)^{m_1}} + \dfrac{B_1}{x-x_2} + \dfrac{B_2}{(x-x_2)^2} + \cdots \end{equation*}
Example 7.4.10.
Evaluate \(\ds \int \dfrac{x}{(x-1)^2}\, dx\)
Solution.
\(\ds \int \dfrac{x}{(x-1)^2}\, dx = \ln |x-1| - \dfrac{1}{x-1} + C\)
Example 7.4.11.
Find \(\ds \int \dfrac{x^4-2x^2+4x+1}{x^3-x^2-x+1}\, dx\)
Solution.
\(\ds \int \dfrac{x^4-2x^2+4x+1}{x^3-x^2-x+1}\, dx = \dfrac{1}{2}x^2 + x - \ln |x+1| + \ln |x-1| - \dfrac{2}{x-1} + C\)
Example 7.4.12.
Evaluate \(\ds \int \dfrac{x^3+4x^2+x-1}{x^3+x^2}\, dx\)
Solution.
\(\ds \int \dfrac{x^3+4x^2+x-1}{x^3+x^2}\, dx = x+2\ln |x| + \dfrac{1}{x} + \ln |x+1| + C\)

Subsubsection 7.4.3.2 Irreducible Quadratic Factors

Definition 7.4.13. Irreducible Quadratic.
The polynomial \(ax^2 + bx + c\) is said to be irreducible if
\begin{equation*} b^2-4ac \lt 0 \end{equation*}
Functions with An Irreducible Quadratic Factor.
Let \(f(x) = \dfrac{P(x)}{Q(x)}\text{,}\) where \(\text{deg}(P) \lt \text{deg}(Q)\text{.}\) If \(Q(x)\) has an irreducible quadratic factor, then the decomposition of \(f(x) = \dfrac{P(x)}{Q(x)}\) will have a term of the form
\begin{equation*} \dfrac{Ax + B}{ax^2 + bx + c} \end{equation*}
Example 7.4.14.
Evaluate \(\ds \int \dfrac{2x^2-x+4}{x^3 + 4x}\, dx\)
Solution.
\(\ds \int \dfrac{2x^2-x+4}{x^3 + 4x}\, dx = \ln |x| + \dfrac{1}{2}\ln (x^2 + 4) - \dfrac{1}{2}\inv{\tan}\lrpar{\dfrac{x}{2}} + C\)
Example 7.4.15.
Evaluate \(\ds \int \dfrac{x-1}{4x^2-4x+3}\, dx\)
Solution.
\(\ds \int \dfrac{x-1}{4x^2-4x+3}\, dx = \dfrac{1}{8}\ln (4x^2-4x + 3) -\dfrac{\sqrt{2}}{8}\inv{\tan}\lrpar{\dfrac{2x-1}{\sqrt{2}}} + C\)

Subsubsection 7.4.3.3 Functions with Repeated Irreducible Quadratic Factors

Let \(f(x) = \dfrac{P(x)}{Q(x)}\text{,}\) where \(\text{deg}(P) \lt \text{deg}(Q)\text{.}\) If \(Q(x)\) has an irreducible quadratic factor of the form \((ax^2 + bx + c)^r\text{,}\) then the decomposition of \(f(x) = \dfrac{P(x)}{Q(x)}\) will have a term of the form
\begin{equation*} \dfrac{A_1x + B_1}{ax^2 + bx + c} + \dfrac{A_2x+B_2}{(ax^2+bx+c)^2} + \cdots + \dfrac{A_rx + B_r}{(ax^2+bx+c)^r} \end{equation*}
Example 7.4.16.
Write the partial fraction decomposition for the function \(f(x) = \dfrac{x}{x(x+1)(x^2+x+1)(x^2+3)^3}\)
Solution.
\(\dfrac{x}{x(x+1)(x^2+x+1)(x^2+3)^3} = \dfrac{A}{x} + \dfrac{B}{x+1} + \dfrac{Cx+D}{x^2+x+1} + \dfrac{Ex+F}{x^2 + 3} + \dfrac{Gx+H}{(x^2+3)^2} + \dfrac{Ix + J}{(x^2+3)^3}\)
Example 7.4.17.
Compute \(\ds \int \dfrac{x^2+x+1}{(x^2+1)^2}\, dx\)
Solution.
\(\ds \int \dfrac{x^2+x+1}{(x^2+1)^2}\, dx = \inv{\tan}(x) - \dfrac{1}{2}\cdot \dfrac{1}{x^2+1} + C\)
Example 7.4.18.
Compute \(\ds \int \dfrac{x^3+6x-2}{x^4+6x^2}\, dx\)
Solution.
\(\ds \int \dfrac{x^3+6x-2}{x^4+6x^2}\, dx = \ln |x| + \dfrac{1}{3}\cdot \dfrac{1}{x} + \dfrac{1}{3\sqrt{6}}\inv{\tan}\lrpar{\dfrac{x}{\sqrt{6}}} + C\)
Example 7.4.19.
Compute \(\ds\int \dfrac{4x}{x^3 + x^2 + x + 1}\, dx\)
Solution.
\(\ds\int \dfrac{4x}{x^3 + x^2 + x + 1}\, dx = \ln (x^2 + 1) + 2\inv{\tan}(x) - 2\ln |x+1| + C\)
Example 7.4.20.
Use substitution to evaluate \(\ds \int \dfrac{dx}{x\sqrt{x-2}}\)
Solution.
\(\ds \int \dfrac{dx}{x\sqrt{x-2}} = \sqrt{2}\inv{\tan}\lrpar{\dfrac{\sqrt{x-2}}{\sqrt{2}}}\)
Example 7.4.21.
Use substitution to evaluate \(\ds \int \dfrac{1}{(1+\sqrt{x})^2}\, dx\)
Solution.
\(\ds \int \dfrac{1}{(1+\sqrt{x})^2}\, dx = \dfrac{2}{\sqrt{x} + 1} + 2\ln |\sqrt{x} + 1| + C\)
Example 7.4.22.
Compute \(\ds \int \dfrac{e^x}{(e^x-2)(e^{2x}+1)}\, dx\)
Solution.
\(\ds \int \dfrac{e^x}{(e^x-2)(e^{2x}+1)}\, dx = \dfrac{1}{5}\ln (e^x-2) -\dfrac{1}{10}\ln (e^{2x} + 1) - \dfrac{2}{5}\inv{\tan} (e^x) + C\)

Subsection 7.4.4 After Class Activities

Example 7.4.23.

Evaluate the following integrals:
  1. \(\displaystyle \ds \int_0^1 \dfrac{x-4}{x^2-5x+6}\, dx\)
  2. \(\displaystyle \ds \int \dfrac{1}{(t^2-1)^2}\, dt\)
  3. \(\displaystyle \ds \int \dfrac{10}{(x-1)(x^2+9)}\, dx\)
  4. \(\displaystyle \ds \int \dfrac{x^4 + 9x^2 + x + 2}{x^2 + 9}\, dx\)
Solution.
  1. \(\displaystyle \ds \int_0^1 \dfrac{x-4}{x^2-5x+6}\, dx = \ln 3 - \ln 8\)
  2. \(\displaystyle \ds \int \dfrac{1}{(t^2-1)^2}\, dt = -\dfrac{1}{2}\cdot \dfrac{x}{x^2-1} - \dfrac{1}{4}\ln|x-1| + \dfrac{1}{4}\ln |x+1| + C\)
  3. \(\displaystyle \ds \int \dfrac{10}{(x-1)(x^2+9)}\, dx = \dfrac{1}{2}\ln (x^2 + 9) + \ln |x-1| - \dfrac{1}{3}\inv{\tan}\lrpar{\dfrac{x}{3}} + C\)
  4. \(\displaystyle \ds \int \dfrac{x^4 + 9x^2 + x + 2}{x^2 + 9}\, dx = \dfrac{1}{3}x^3 + \dfrac{1}{2}\ln (x^2 + 9) + \dfrac{2}{3}\inv{\tan}\lrpar{\dfrac{x}{3}} + C\)