Skip to main content

Section 6.2 Exponential Functions & Derivatives

Subsection 6.2.1 Before Class

https://mymedia.ou.edu/media/6.2-1/1_gj4wt9zt
Figure 51. Pre-Class Video 1

Subsubsection 6.2.1.1 Exponential Functions

Definition 6.2.1. Exponential Function.
An exponential function is a function of the form \(f(x) = b^x\text{,}\) where \(b\) is a positive constant.
Properties of Exponential Functions.
Let \(f(x) = b^x\)
  • Domain: \((-\infty,\infty)\)
  • Range: \([0,\infty)\)
  • If \(b\gt 1\text{,}\) then \(f(x)\) is increasing
  • If \(0\lt b \lt 1\text{,}\) then \(f(x)\) is decreasing
  • \(\displaystyle \ds \lim_{x\to \infty} f(x) = \begin{cases} \infty & \text{if } b\gt 1 \\ 0 & \text{if } 0\lt b\lt 1 \end{cases}\)
  • \(\displaystyle \ds \lim_{x\to -\infty} f(x) = \begin{cases} 0 & \text{if } b\gt 1 \\ \infty & \text{if } 0\lt b\lt 1 \end{cases}\)
Example 6.2.2.
For the following functions, find the limits and sketch the graph.
  1. \(\displaystyle f(x) = 2(1.2^x)+3\)
  2. \(\displaystyle g(x) = 3^{-x} -1\)
Solution.
  1. \(\ds \lim_{x\to -\infty} f(x) = 3\) and \(\ds \lim_{x\to\infty} f(x) = \infty\)
    A graph of the function \(f(x) = 2(1.2^x) + 3\)
  2. \(\ds \lim_{x\to -\infty} g(x) = \infty\) and \(\ds \lim_{x\to\infty} g(x) = -1\)
    A graph of the function \(f(x) = 3^{-x}-1\)
Definition 6.2.3. Euler’s Constant (\(e\)).
\(e\) is defined to the number for which \(\ds \lim_{h\to 0} \dfrac{e^h-1}{h}=1\)

Subsubsection 6.2.1.2 Calculus of Exponentials

Derivative of an Exponential (First Attempt).
If \(f(x) = b^x\text{,}\) then \(f'(x) = f'(0)b^x\)
Using the definition of the derivative, we have
\begin{equation*} \ds f'(x) = \lim_{h\to 0} \dfrac{b^{x+h}-b^x}{h} = \lim_{h\to 0} \dfrac{b^x(b^h-1)}{h} = b^x\cdot \lim_{h\to 0} \dfrac{b^h-1}{h} \end{equation*}
Now,
\begin{equation*} \ds f'(0) = \lim_{h\to 0} \dfrac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \dfrac{b^{0+h}-b^0}{h} = \lim_{h\to 0} \dfrac{b^h-1}{h} \end{equation*}
So we conclude that \(f'(x) = f'(0)b^x\)
This means we have the following interpretation of \(f(x) = e^x\text{:}\)
Special Meaning of \(e\).
\(f(x) = e^x\) is the unique exponential function whose tangent line at the point \((0,1)\) is exactly 1, i.e. \(f'(0) = 1\)
Derivative of \(e^x\).
\(\dfrac{d}{dx}\left[e^x\right] = e^x\)
Antiderivative of \(e^x\).
\(\ds \int e^x\, dx = e^x + C\)

Subsection 6.2.2 Pre-Class Activities

Example 6.2.4.

Write the domain of the function:
  1. \(\displaystyle f(x) = \dfrac{1-e^{x^2}}{1-e^{4-x^2}}\)
  2. \(\displaystyle g(x) = \dfrac{1+x}{3^{\sin x}}\)
  3. \(\displaystyle h(t) = \sqrt{4^t - 16}\)
Solution.
  1. \(\displaystyle (-\infty,-2)\cup (-2,2)\cup (2,\infty)\)
  2. \(\displaystyle (-\infty,\infty)\)
  3. \(\displaystyle [2,\infty)\)

Example 6.2.5.

Find the indicated limit:
  1. \(\displaystyle \ds \lim_{x\to \infty} (1.0001)^x\)
  2. \(\displaystyle \ds \lim_{x\to \infty} \dfrac{e^{3x}-e^{-3x}}{e^{3x} + e^{-3x}}\)
  3. \(\displaystyle \ds \lim_{x\to \infty} (e^{-2x}\sin x)\)
Solution.
  1. \(\displaystyle \ds \lim_{x\to \infty} (1.0001)^x = \infty\)
  2. \(\displaystyle \ds \lim_{x\to \infty} \dfrac{e^{3x}-e^{-3x}}{e^{3x} + e^{-3x}} = 1\)
  3. \(\displaystyle \ds \lim_{x\to \infty} (e^{-2x}\sin x) = 0\)

Example 6.2.6.

Find the derivative of the function:
  1. \(\displaystyle f(x) = e^4\)
  2. \(\displaystyle g(r) = e^r + r^e\)
  3. \(\displaystyle f(x) = \dfrac{e^x}{1+e^x}\)
Solution.
  1. \(\displaystyle f'(x) = 0\)
  2. \(\displaystyle g'(r) = e^r + er^{e-1}\)
  3. \(\displaystyle f'(x) = \dfrac{(1+e^x)(e^x)-(e^x)(e^x)}{(1+e^x)^2}\)

Example 6.2.7.

Find the equation of the tangent line to the curve \(y = xe^x\) at the point \((1,e)\text{.}\)
Solution.
\(y =2ex-e\)

Question 6.2.8.

Use this space to write any questions or concerns you have from the pre-class portion of this section.
Solution.
Answers vary

Subsection 6.2.3 In Class

Subsubsection 6.2.3.1 Examples

Example 6.2.9.
Compute \(f'(x)\text{,}\) if \(f(x) = e^{\tan x}\)
Solution.
\(f'(x) = e^{\tan x}\cdot \sec^2 x\)
Example 6.2.10.
Compute \(f'(x)\text{,}\) if \(f(x) = \tan(e^x)\)
Solution.
\(f'(x) = \sec^2(e^x)\cdot e^x\)
Example 6.2.11.
Find \(y'\) if \(y=e^{-6x}\cos(2x)\)
Solution.
\(y'=(-6e^{-6x})(\cos 2x) +(e^{-6x})(-2\sin 2x)\)
Example 6.2.12.
Find the absolute maximum and absolute minimum of \(y=xe^{-x}\)
Solution.
Absolute max is at \(x=1\) and there is no absolute min
Example 6.2.13.
Find \(\dfrac{dy}{dx}\text{,}\) if \(e^{x/y} = y-x\)
Solution.
\(\dfrac{dy}{dx} = \dfrac{ye^{x/y}+y^2}{y^2+xe^{x/y}}\)
Example 6.2.14.
Compute the derivatives:
  1. \(\displaystyle y = x^2e^{-1/x}\)
  2. \(\displaystyle g(x) = e^{x^2-x}\)
  3. \(\displaystyle f(t) = \sqrt{1+te^{-2t}}\)
Solution.
  1. \(\displaystyle y'= 2xe^{-1/x} + (x^2)\lrpar{\dfrac{1}{x^2}e^{-1/x}}\)
  2. \(\displaystyle g'(x) = (2x-1)e^{x^2-x}\)
  3. \(\displaystyle f'(t) = \dfrac{1}{2}(1+te^{-2t})^{-1/2}(e^{-2t}-2te^{-2t})\)
Example 6.2.15.
Find the absolute maximum and absolute minimum of \(f(x) = xe^{-x^2/8}\) on \([-1,4]\)
Solution.
Absolute max occurs at \(\lrpar{2,2e^{-1/2}}\) and aboslute min occurs at \(\lrpar{-1,-e^{-1/8}}\)
Example 6.2.16.
Evaluate the integral:
  1. \(\displaystyle \ds \int_0^1 (x^e + e^x)\, dx\)
  2. \(\displaystyle \ds\int x^3e^{x^4}\, dx\)
  3. \(\displaystyle \ds\int e^x\sqrt{1+e^x}\, dx\)
Solution.
  1. \(\displaystyle \ds \int_0^1 (x^e + e^x)\, dx = \dfrac{1}{e+1}+e-1\)
  2. \(\displaystyle \ds\int x^3e^{x^4}\, dx = \dfrac{1}{4}e^{4x}+C\)
  3. \(\displaystyle \ds\int e^x\sqrt{1+e^x}\, dx = \dfrac{2}{3}(1+e^x)^{3/2} + C\)
Example 6.2.17.
Compute \(\ds \int_1^2 \dfrac{e^{1/x}}{x^2}\, dx\)
Solution.
\(\ds \int_1^2 \dfrac{e^{1/x}}{x^2}\, dx = e-e^{1/2}\)
Example 6.2.18.
Find \(f(x)\) if \(f''(x) = 3e^x+5\sin x\text{,}\) \(f(0)=1\text{,}\) and \(f'(0)=2\)
Solution.
\(f(x)= 3e^x-5\sin x + 4x-2\)
Example 6.2.19.
The error function, \(\ds \text{erf}(x) = \dfrac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\,dt\) is a useful function in probability, statistics, and engineering. Show that
\begin{equation*} \ds \int_a^b e^{-t^2}\, dt = \dfrac{1}{2}\sqrt{\pi}\left[\text{erf}(b) - \text{erf}(a)\right]\text{.} \end{equation*}
Solution.
Rearranging, we have
\begin{equation*} \dfrac{\sqrt{\pi}}{2}\text{erf}(x) = \ds \int_0^x e^{-t^2}\, dt \end{equation*}
So, \(\ds \int_0^a e^{-t^2}\, dt = \dfrac{\sqrt{\pi}}{2}\text{erf}(a)\) and \(\ds \int_0^b e^{-t^2}\, dt = \dfrac{\sqrt{\pi}}{2}\text{erf}(b)\text{.}\) Now, using properties of integrals, we have
\begin{equation*} \ds \int_a^b e^{-t^2}\, dt = -\int_0^a e^{-t^2}\, dt + \int_0^b e^{-t^2}\,dt = \dfrac{1}{2}\sqrt{\pi}\left[\text{erf}(b) - \text{erf}(a)\right] \end{equation*}

Subsection 6.2.4 After Class Activities

Example 6.2.20.

Show that the function \(y = e^x + e^{-x/2}\) satisfies the differential equation \(2y'' - y' - y = 0\)
Solution.
Compute \(y'\) and \(y''\text{:}\)
\begin{equation*} y' = e^x -\dfrac{1}{2}e^{-x/2} \end{equation*}
\begin{equation*} y'' = e^x + \dfrac{1}{4}e^{-x/2} \end{equation*}
Now, plugging in for \(y''\) and \(y'\text{,}\) we have
\begin{equation*} 2(e^x + \dfrac{1}{4}e^{-x/2}) - (e^x -\dfrac{1}{2}e^{-x/2}) - (e^x + e^{-x/2}) \end{equation*}
which does equal 0.

Example 6.2.21.

Find an equation of the tangent line to the curve \(xe^y + ye^x = 1\) at the point \((0,1)\)
Solution.
\(y=-(e+1)x + 1\)

Example 6.2.22.

Compute \(\dfrac{d^{1000}}{dx^{1000}}\left[xe^{-x}\right]\)
Solution.
\(\dfrac{d^{1000}}{dx^{1000}}\left[xe^{-x}\right] = -1000e^{-x} +xe^{-x}\)

Example 6.2.23.

If \(f(x) = 3 + x + e^x\text{,}\) find \((\inv{f})'(4)\)
Solution.
\((\inv{f})'(4) = \dfrac{1}{2}\)

Example 6.2.24.

Evaluate \(\ds \lim_{x\to \pi} \dfrac{e^{\sin x} - 1}{x-\pi}\)
Solution.
\(\ds \lim_{x\to \pi} \dfrac{e^{\sin x} - 1}{x-\pi} = -1\)

Example 6.2.25.

Find the volume of the solid obtained by rotating the region bounded by the curves \(y = e^x\text{,}\) \(y = 0\text{,}\) \(x = 0\text{,}\) and \(x = 1\) about the \(x-\)axis.
Solution.
The volume is \(\dfrac{\pi}{2}[e^2-1]\)