Skip to main content ☰ Contents You! < Prev ^ Up Next > \( \newcommand{\ds}{\displaystyle}
\newcommand{\lrpar}[1]{\left(#1\right)}
\newcommand{\lrbrace}[1]{\left\lbrace #1 \right\rbrace}
\newcommand{\inv}[1]{#1^{-1}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\dc}{^\circ}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.5 The Substitution Rule
Objectives
Subsection 4.5.1 Before Class
https://mymedia.ou.edu/media/4.5-1/1_jdr29nl3
Figure 43. Pre-Class Video 1https://mymedia.ou.edu/media/4.5-2/1_4vf7mn28
Figure 44. Pre-Class Video 2
Subsubsection 4.5.1.1 The Rule for Indefinite & Definite Integrals
The substitution rule for integrals allows us to take antiderivatives of composite functions.
Theorem 4.5.1 . Substitution Rule.
If \(u=g(x)\) is a differentiable function whose range is an interval \(I\) and \(f\) is continuous on \(I\text{,}\) then \(\ds \int f(g(x))\cdot g'(x)\, dx = \int f(u)\, du\)
Example 4.5.2 .
Let \(f(x) = \sin (x^3+1)\)
Let \(u=x^3+1\text{.}\) Find \(\dfrac{du}{dx}\text{.}\)
Find \(\dfrac{df}{dx}\text{.}\)
Solution .
\(\displaystyle \dfrac{du}{dx} = 3x^2\)
\(\displaystyle \dfrac{df}{dx} = \dfrac{df}{du}\cdot \dfrac{du}{dx} = \sin u\cdot \dfrac{3x^2} = \sin (x^3 + 1)\cdot 3x^2\)
Example 4.5.3 .
Using the previous example, compute \(\ds \int 3x^2\cos(x^3+1)\, dx\)
Solution . \(\ds \int 3x^2\cos(x^3+1)\, dx = \sin (x^3 + 1) + C\)
Example 4.5.4 .
Find the general antiderivative of \(\sin (2x)\text{.}\)
Solution . \(\ds \int \sin (2x)\, dx = -\dfrac{1}{2}\cos (2x) + C\)
Example 4.5.5 .
Find \(\ds \int 54x\sqrt{9x^2 + 5}\, dx\text{.}\)
Solution . \(\ds \int 54x\sqrt{9x^2 + 5}\, dx = 2(9x^2+5)^{3/2} + C\)
Example 4.5.6 .
Evaluate \(\ds \int_0^4 \sqrt{2x+1}\,dx\)
Solution . \(\ds \int_0^4 \sqrt{2x+1}\,dx = \dfrac{26}{3}\)
Steps for \(u-\) substitution.
Identify the “chain rule” term; call it \(u=f(x)\)
Differentiate \(u\) so that you end up with something that looks like \(du = f'(x)\, dx\)
Solve for \(dx\text{,}\) and substitute into the integral.
If we have a definite integral rather than an indefinite integral, we add a fourth step prior to integrating:
Integrals of Symmetric Functions.
For symmetric functions, we have the following properties:
If \(f\) is continuous on \([-a,a]\) and \(f\) is even, then \(\ds \int_{-a}^a f(x)\, dx = 2\int_0^a f(x)\, dx\)
If \(f\) is continuous on \([-a,a]\) and \(f\) is odd, then \(\ds \int_{-a}^a f(x)\, dx = 0\)
Subsection 4.5.2 Pre-Class Activities
Example 4.5.7 .
Since the chain rule is something that gives many students trouble, using the substitution rule sometimes also gives people trouble. What, if any, part of the process would you like to see more examples of in class?
Example 4.5.8 .
Compute \(\ds \int \cos(3x)\, dx\)
Example 4.5.9 .
Let \(f(x) = (x-3)^3\)
Compute \(\ds \int f(x)\, dx\) without using \(u-\) substitution.
Now compute \(\ds \int f(x)\, dx\) with \(u-\) substitution.
Which method do you prefer?
Solution .
\(\displaystyle \dfrac{1}{4}x^4-3x^3+\dfrac{27}{2}x^2 -27x + C \)
\(\displaystyle \dfrac{1}{4}(x-3)^4 + C\)
Answers vary
Example 4.5.10 .
Compute \(\ds \int_1^2 (x-1)^{2021}\, dx\text{.}\) Why is \(u-\) substitution the only viable way of approaching this problem>?
Solution .
\(\dfrac{1}{2022}\text{.}\) It’s unreasonable to expand \((x-1)^{2021}\) and then integrate.
Subsection 4.5.3 In Class
Subsubsection 4.5.3.1 Examples
Example 4.5.11 .
Find \(\ds \int_0^1 \dfrac{x}{\sqrt{6-4x^2}}\,dx\)
Solution . \(\ds \int_0^1 \dfrac{x}{\sqrt{6-4x^2}}\,dx = \dfrac{\sqrt{6} - \sqrt{2}}{4}\)
Example 4.5.12 .
Evaluate \(\ds \int_1^2 \dfrac{dx}{(3-5x)^2}\)
Solution . \(\ds \int_1^2 \dfrac{dx}{(3-5x)^2} = \dfrac{1}{14}\)
Example 4.5.13 .
Find the indefinite integral of \(f(x) = x^5\sqrt{1+x^2}\)
Solution . \(\ds \int f(x)\, dx = \dfrac{1}{7} (1+x^2)^{7/2} - \dfrac{2}{5}(1+x^2)^{5/2} + \dfrac{1}{3}(1+x^2)^{3/2} + C\)
Example 4.5.14 .
Evaluate \(\ds \int_{\pi/2}^\pi \sin\lrpar{\dfrac{2\theta}{3}}\,d\theta\)
Solution . \(\ds \int_{\pi/2}^\pi \sin\lrpar{\dfrac{2\theta}{3}}\,d\theta = \dfrac{3}{2}\)
Example 4.5.15 .
Evaluate \(\ds \int (x^2+1)(x^3+3x)^4\,dx\)
Solution . \(\ds \int (x^2+1)(x^3+3x)^4\,dx = \dfrac{1}{15}(x^3+3x)^5 + C\)
Example 4.5.16 .
Evaluate \(\ds \int \dfrac{dt}{\cos^2t\sqrt{1+\tan t}}\)
Solution . \(\ds \int \dfrac{dt}{\cos^2t\sqrt{1+\tan t}} = 2\sqrt{1+\tan t} + C\)
Example 4.5.17 .
Evaluate \(\ds \int_0^1\cos\lrpar{\dfrac{\pi t}{2}}\, dt\)
Solution . \(\ds \int_0^1\cos\lrpar{\dfrac{\pi t}{2}}\, dt =\dfrac{2}{\pi}\)
Example 4.5.18 .
Evaluate \(\ds \int_0^a x\sqrt{a^2-x^2}\,dx\)
Solution . \(\ds \int_0^a x\sqrt{a^2-x^2}\,dx =\dfrac{1}{3}a^3\)
Example 4.5.19 .
Evaluate \(\ds \int x(2x+5)^8\,dx\)
Solution . \(\ds \int x(2x+5)^8\,dx = \dfrac{1}{40} (2x+5)^{10} - \dfrac{5}{36}(2x+5)^9 + C\)
Example 4.5.20 .
Evaluate \(\ds \int \sin x\sin (\cos x)\,dx\)
Solution . \(\ds \int \sin x\sin (\cos x)\,dx = \cos (\cos x) + C\)
Example 4.5.21 .
Evaluate \(\ds \int y^2(4-y^3)^{2/3}\,dy\)
Solution . \(\ds \int y^2(4-y^3)^{2/3}\,dy = -\dfrac{1}{5}(4-y^3)^{5/3} + C\)
Example 4.5.22 .
Evaluate \(\ds \int_{-\pi/3}^{\pi/3} x^4\sin x\,dx\)
Solution . \(\ds \int_{-\pi/3}^{\pi/3} x^4\sin x\,dx = 0\)
Example 4.5.23 .
Evaluate \(\ds \int_0^{\sqrt{\pi}} x\cos (x^2)\, dx\)
Solution . \(\ds \int_0^{\sqrt{\pi}} x\cos (x^2)\, dx = 0\)
Example 4.5.24 .
Evaluate \(\ds \int_0^{\pi/2}\cos x \sin (\sin x)\, dx\)
Solution . \(\ds \int_0^{\pi/2}\cos x \sin (\sin x)\, dx = 1-\cos 1\)
Example 4.5.25 .
Evaluate \(\ds \int_0^1 \dfrac{dx}{(1+\sqrt{x})^4}\)
Solution . \(\ds \int_0^1 \dfrac{dx}{(1+\sqrt{x})^4} = \dfrac{1}{6}\)
Example 4.5.26 .
Evaluate \(\ds \int_0^{13} \dfrac{dx}{\sqrt[3]{(1+2x)^2}}\)
Solution . \(\ds \int_0^{13} \dfrac{dx}{\sqrt[3]{(1+2x)^2}} = 6\)
Example 4.5.27 .
Evaluate \(\ds \int \dfrac{\cos (\pi/x)}{x^2}\,dx\)
Solution . \(\ds \int \dfrac{\cos (\pi/x)}{x^2}\,dx = -\dfrac{1}{\pi} \sin \lrpar{\dfrac{\pi}{x}} + C\)
Example 4.5.28 .
Evaluate \(\ds \int_0^1 \sqrt[3]{1+7x}\, dx\)
Solution . \(\ds \int_0^1 \sqrt[3]{1+7x}\, dx = \dfrac{45}{28}\)
Example 4.5.29 .
If \(f\) is continuous at \(\ds \int_0^4 f(x)\, dx = 10\text{,}\) find \(\ds \int_0^2 f(2x)\, dx\)
Subsection 4.5.4 After Class Activities
Example 4.5.30 .
Find \(\ds \int \dfrac{\cos \sqrt{x}}{\sqrt{x}}\, dx\)
Solution . \(\ds \int \dfrac{\cos \sqrt{x}}{\sqrt{x}}\, dx = 2\sin\sqrt{x} + C\)
Example 4.5.31 .
Find \(\ds \int \sin x \cos^4 x\, dx\)
Solution . \(\ds \int \sin x \cos^4 x\, dx = -\dfrac{1}{5}\cos^5x + C\)
Example 4.5.32 .
Compute \(\ds \int_{-\pi/4}^{\pi/4} \lrpar{x^3 + x^4 \tan x}\, dx\)
Solution . \(\ds \int_{-\pi/4}^{\pi/4} \lrpar{x^3 + x^4 \tan x}\, dx = 0\)
Example 4.5.33 .
Evaluate \(\ds \int_{1/2}^1 \dfrac{\sin (x^{-2})}{x^3}\, dx\)
Solution . \(\ds \int_{1/2}^1 \dfrac{\sin (x^{-2})}{x^3}\, dx = \dfrac{1}{2}\cos \lrpar{\dfrac{1}{4}} - \dfrac{1}{2}\cos 1\)
Example 4.5.34 .
Evaluate \(\ds \int_{\pi/3}^{2\pi/3} \csc^2\lrpar{\dfrac{t}{2}}\,dt\)
Solution . \(\ds \int_{\pi/3}^{2\pi/3} \csc^2\lrpar{\dfrac{t}{2}}\,dt = \dfrac{4\sqrt{3}}{3}\)