Skip to main content

Section 4.3 The Fundamental Theorem of Calculus

Subsection 4.3.1 Before Class

https://mymedia.ou.edu/media/4.3-1/1_9m7tun82
Figure 41. Pre-Class Video 1

Subsubsection 4.3.1.1 The First Fundamental Theorem

Example 4.3.1.
The function \(f\) is given in the graph below. Define the function \(g(x) = \ds \int_0^x f(t)\, dt\text{.}\) Find \(g(0),g(1),g(2)\text{,}\) and \(g(3)\text{.}\) Then, sketch a rough graph of \(g\) on the interval \([0,3]\text{.}\)
The graph of an accumulation function, a line going from \((0,0)\) to \((1,2)\text{,}\) a horizontal line from \((1,2)\) to \((2,2)\text{,}\) and \(2\cos\lrpar{\dfrac{\pi}{2}(x-2)}\) from \((2,2)\) to \((5,-2)\text{.}\)
Solution.
\begin{align*} g(0) \amp = 0 \\ g(1) \amp = 1 \\ g(2) \amp = 3\\ g(3) \amp = 3 \end{align*}
Answers for the sketch will vary
Example 4.3.3.
Find the derivative of the function \(g(x) = \ds \int_0^x \sqrt{1-t^2}\, dt\)
Solution.
\(g'(x) = \sqrt{1-x^2}\)
Example 4.3.4.
Find \(\ds \dfrac{d}{dx} \int_1^{x^2} \csc t\, dt\)
Solution.
\(\csc (x^2)\cdot 2x\)
Example 4.3.5.
Find \(F'(x)\text{,}\) if \(F(x) = \ds \int_x^0 \sqrt{1+\sec y}\, dy\)
Solution.
\(F'(x) = -\sqrt{1+\sec x}\)

Subsection 4.3.2 Pre-Class Activities

Example 4.3.6.

Let \(g(x) = \ds \int_0^x f(t)\, dt\text{,}\) where \(f\) is the function in the graph below.
  1. Evaluate \(g(0),g(1),g(2),g(3)\text{,}\) and \(g(6)\)
  2. Where is \(g\) increasing?
  3. Where does \(g\) have a local max?
  4. Sketch a rough graph of \(g\text{?}\)
Solution.
  1. \(g(0) = 0\text{,}\) \(g(1) = 2\text{,}\) \(g(2) = 3\text{,}\) \(g(3) = 5\text{,}\) \(g(6) = 1\)
  2. \(\displaystyle (0,3)\)
  3. \(\displaystyle t=3\)
  4. Answers vary.

Example 4.3.7.

Find the derivative of the following functions:
  1. \(\displaystyle g(x) = \ds \int_2^x \sqrt{k+k^3}\, dk\)
  2. \(\displaystyle r(y) = \ds \int_y^2 t^3\cos t\, dt\)
  3. \(\displaystyle f(x) = \ds \int_0^{x^4} \tan^2t\, dt\)
Solution.
  1. \(\displaystyle g'(x) = \sqrt{x+x^3}\)
  2. \(\displaystyle r'(y) = -y^3\cos y\)
  3. \(\displaystyle f'(x) = 4x^3\tan^2(x^4)\)

Example 4.3.8.

If \(f(x) = \ds \int_0^x (1-t^2)\cos^2t\, dt\text{,}\) on what interval is \(f\) increasing?
Solution.
\(0\lt x \lt 1\)

Subsection 4.3.3 In Class

Subsubsection 4.3.3.1 The Second Fundamental Theorem

Example 4.3.10.
Evaluate \(\ds \int_{-2}^1 x^3\,dx\)
Solution.
\(\ds \int_{-2}^1 x^3\,dx = -\dfrac{15}{4}\)
Example 4.3.11.
Find the area under the curve \(y = x^2\) from 0 to 1.
Solution.
\(\ds \int_0^1 x^2\, dx = \dfrac{1}{3}\)
Example 4.3.12.
Find the area under the curve \(y = \sin x\text{,}\) from \(0\) to \(\dfrac{3\pi}{2}\)
Solution.
\(\ds \int_0^{3\pi/2} \sin x\, dx = 1\)
Example 4.3.13.
Is the statement \(\ds \int_{-1}^1 \dfrac{1}{x^3}\, dx = 0\) correct? Why or why not?
Solution.
No- \(\dfrac{1}{x^3}\) is not continuous at \(x=0\text{,}\) so we can’t use FTC 2.
Example 4.3.14.
Find the derivative of \(g(r) = \ds \int_5^r (t-t^2)^8\,dt\)
Solution.
\(g'(r) = (r-r^2)^8\)
Example 4.3.15.
Find the derivative of \(R(y) = \ds \int_{y}^4 t^5\sec t\, dt\)
Solution.
\(R'(y) = -y^5\sec y\)
Example 4.3.16.
Find the derivative of \(y = \ds\int_0^{4x^3} \tan^2\theta\, d\theta\)
Solution.
\(\dfrac{dy}{dx} = 12x^2\tan^2(4x^3)\)
Example 4.3.17.
Calculate the integral \(\ds \int_1^3 (x^2+2x-4)\, dx\)
Solution.
\(\ds \int_1^3 (x^2+2x-4)\, dx= \dfrac{26}{3}\)
Example 4.3.18.
Calculate the integral \(\ds \int_0^2 \lrpar{\dfrac{4}{5}t^3-\dfrac{3}{4}t^2+\dfrac{2}{5}t}\,dt\)
Solution.
\(\ds \int_0^2 \lrpar{\dfrac{4}{5}t^3-\dfrac{3}{4}t^2+\dfrac{2}{5}t}\,dt= 2\)
Example 4.3.19.
Calculate the integral \(\ds \int_1^9 \sqrt{x}\,dx\)
Solution.
\(\ds \int_1^9 \sqrt{x}\,dx = \dfrac{52}{3}\)
Example 4.3.20.
Calculate the integral \(\ds \int_1^4 \dfrac{2+x^2}{\sqrt{x}}\,dx\)
Solution.
\(\ds \int_1^4 \dfrac{2+x^2}{\sqrt{x}}\,dx = \dfrac{82}{5}\)
Example 4.3.21.
Calculate the integral \(\ds \int_{\pi/6}^{\pi/2}\csc t\cot t\, dt\)
Solution.
\(\ds \int_{\pi/6}^{\pi/2}\csc t\cot t\, dt = 1\)
Example 4.3.22.
Calculate the integral \(\ds \int_{-1}^2 (3u-2)(u+1)\, du\)
Solution.
\(\ds \int_{-1}^2 (3u-2)(u+1)\, du = \dfrac{9}{2}\)
Example 4.3.23.
Calculate the integral \(\ds \int_{\pi/4}^{\pi/3} \csc^2\theta\, d\theta\)
Solution.
\(\ds \int_{\pi/4}^{\pi/3} \csc^2\theta\, d\theta = 1-\dfrac{1}{\sqrt{3}}\)
Example 4.3.24.
Calculate the integral \(\ds \int_1^{18} \sqrt{\dfrac{2}{z}}\, dz\)
Solution.
\(\ds \int_1^{18} \sqrt{\dfrac{2}{z}}\, dz = 12-2\sqrt{2}\)
Example 4.3.25.
Evaluate the integral \(\ds \int_1^2 \dfrac{v^5+3v^6}{v^4}\, dv\)
Solution.
\(\ds \int_1^2 \dfrac{v^5+3v^6}{v^4}\, dv = \dfrac{17}{2}\)
Example 4.3.26.
Evaluate the integral \(\ds\int_0^\pi f(x)\, dx\text{,}\) where
\begin{equation*} f(x) = \begin{cases}\sin x \amp \text{if }0\leq x \lt \pi/2 \\ \cos x \amp \text{if }\pi/2\leq x\leq \pi \end{cases} \end{equation*}
Solution.
\(\ds \int_0^\pi f(x)\, dx = 0\)
Example 4.3.27.
Evaluate the limit \(\ds \lim_{n\to \infty} \sum_{i=1}^n \lrpar{\dfrac{i^4}{n^5} + \dfrac{i}{n^2}}\text{.}\) Hint: Consider it as a Riemann sum on \([0,1]\text{.}\)
Solution.
\(\ds \lim_{n\to \infty} \sum_{i=1}^n \lrpar{\dfrac{i^4}{n^5} + \dfrac{i}{n^2}} = \int_0^1 x^3 + x\, dx = \dfrac{7}{10}\)
Example 4.3.28.
If \(f(1) = 12\text{,}\) \(f'\) is continuous, and \(\ds \int_1^4 f'(x)\, dx = 17\text{,}\) what is the value of \(f(4)\text{?}\)
Solution.
\(f(4) = 29\)

Subsection 4.3.4 After Class Activities

Example 4.3.29.

Compute \(\ds \int_0^1 (1+r)^3\, dr\)
Solution.
\(\ds \int_0^1 (1+r)^3\, dr = \dfrac{7}{4}\)

Example 4.3.30.

Find the area under the curve \(f(x) = \dfrac{x^4 + 1}{x^2}\) between 1 and 2.
Solution.
\(\ds \int_1^2 f(x)\, dx = \dfrac{17}{6}\)

Example 4.3.31.

Evaluate \(\ds \int_{-1}^1 x^{2022}\, dx\)
Solution.
\(\ds \int_{-1}^1 x^{2022}\, dx = \dfrac{2}{2023}\)

Example 4.3.32.

What does it mean for differentiation and integration to be inverse processes?
Solution.
Differentiation and integration undo each other; you take a deriative to undo an integral, and you take an integral to undo a derivative.