Skip to main content

Section 4.3 The Fundamental Theorem of Calculus

Subsection 4.3.1 Before Class

https://mymedia.ou.edu/media/4.3-1/1_9m7tun82
Figure 41. Pre-Class Video 1

Subsubsection 4.3.1.1 The First Fundamental Theorem

Example 4.3.1.
The function f is given in the graph below. Define the function g(x)=0xf(t)dt. Find g(0),g(1),g(2), and g(3). Then, sketch a rough graph of g on the interval [0,3].
The graph of an accumulation function, a line going from \((0,0)\) to \((1,2)\text{,}\) a horizontal line from \((1,2)\) to \((2,2)\text{,}\) and \(2\cos\lrpar{\dfrac{\pi}{2}(x-2)}\) from \((2,2)\) to \((5,-2)\text{.}\)
Solution.
g(0)=0g(1)=1g(2)=3g(3)=3
Answers for the sketch will vary
Example 4.3.3.
Find the derivative of the function g(x)=0x1t2dt
Solution.
g(x)=1x2
Example 4.3.4.
Find ddx1x2csctdt
Solution.
csc(x2)2x
Example 4.3.5.
Find F(x), if F(x)=x01+secydy
Solution.
F(x)=1+secx

Subsection 4.3.2 Pre-Class Activities

Example 4.3.6.

Let g(x)=0xf(t)dt, where f is the function in the graph below.
  1. Evaluate g(0),g(1),g(2),g(3), and g(6)
  2. Where is g increasing?
  3. Where does g have a local max?
  4. Sketch a rough graph of g?
Solution.
  1. g(0)=0, g(1)=2, g(2)=3, g(3)=5, g(6)=1
  2. (0,3)
  3. t=3
  4. Answers vary.

Example 4.3.7.

Find the derivative of the following functions:
  1. g(x)=2xk+k3dk
  2. r(y)=y2t3costdt
  3. f(x)=0x4tan2tdt
Solution.
  1. g(x)=x+x3
  2. r(y)=y3cosy
  3. f(x)=4x3tan2(x4)

Example 4.3.8.

If f(x)=0x(1t2)cos2tdt, on what interval is f increasing?
Solution.
0<x<1

Subsection 4.3.3 In Class

Subsubsection 4.3.3.1 The Second Fundamental Theorem

Example 4.3.10.
Evaluate 21x3dx
Solution.
21x3dx=154
Example 4.3.11.
Find the area under the curve y=x2 from 0 to 1.
Solution.
01x2dx=13
Example 4.3.12.
Find the area under the curve y=sinx, from 0 to 3π2
Solution.
03π/2sinxdx=1
Example 4.3.13.
Is the statement 111x3dx=0 correct? Why or why not?
Solution.
No- 1x3 is not continuous at x=0, so we can’t use FTC 2.
Example 4.3.14.
Find the derivative of g(r)=5r(tt2)8dt
Solution.
g(r)=(rr2)8
Example 4.3.15.
Find the derivative of R(y)=y4t5sectdt
Solution.
R(y)=y5secy
Example 4.3.16.
Find the derivative of y=04x3tan2θdθ
Solution.
dydx=12x2tan2(4x3)
Example 4.3.17.
Calculate the integral 13(x2+2x4)dx
Solution.
13(x2+2x4)dx=263
Example 4.3.18.
Calculate the integral 02(45t334t2+25t)dt
Solution.
02(45t334t2+25t)dt=2
Example 4.3.19.
Calculate the integral 19xdx
Solution.
19xdx=523
Example 4.3.20.
Calculate the integral 142+x2xdx
Solution.
142+x2xdx=825
Example 4.3.21.
Calculate the integral π/6π/2csctcottdt
Solution.
π/6π/2csctcottdt=1
Example 4.3.22.
Calculate the integral 12(3u2)(u+1)du
Solution.
12(3u2)(u+1)du=92
Example 4.3.23.
Calculate the integral π/4π/3csc2θdθ
Solution.
π/4π/3csc2θdθ=113
Example 4.3.24.
Calculate the integral 1182zdz
Solution.
1182zdz=1222
Example 4.3.25.
Evaluate the integral 12v5+3v6v4dv
Solution.
12v5+3v6v4dv=172
Example 4.3.26.
Evaluate the integral 0πf(x)dx, where
f(x)={sinxif 0x<π/2cosxif π/2xπ
Solution.
0πf(x)dx=0
Example 4.3.27.
Evaluate the limit limni=1n(i4n5+in2). Hint: Consider it as a Riemann sum on [0,1].
Solution.
limni=1n(i4n5+in2)=01x3+xdx=710
Example 4.3.28.
If f(1)=12, f is continuous, and 14f(x)dx=17, what is the value of f(4)?
Solution.
f(4)=29

Subsection 4.3.4 After Class Activities

Example 4.3.29.

Compute 01(1+r)3dr
Solution.
01(1+r)3dr=74

Example 4.3.30.

Find the area under the curve f(x)=x4+1x2 between 1 and 2.
Solution.
12f(x)dx=176

Example 4.3.31.

Evaluate 11x2022dx
Solution.
11x2022dx=22023

Example 4.3.32.

What does it mean for differentiation and integration to be inverse processes?
Solution.
Differentiation and integration undo each other; you take a deriative to undo an integral, and you take an integral to undo a derivative.