Skip to main content

Section 7.8 Improper Integrals

Subsection 7.8.1 Before Class

https://mymedia.ou.edu/media/7.8-1/1_dlr6ol1w
Figure 66. Pre-Class Video 1
https://mymedia.ou.edu/media/7.8-2/1_3v7uc3ql
Figure 67. Pre-Class Video 2

Subsubsection 7.8.1.1 Type 1 Integrals

Example 7.8.1.
Fill out the following table of values for \(\ds \int_0^a e^{-x}\, dx\text{:}\)
a Exact Value Approximate Value
1
100
1000
10000
Based on the table, do you expect the integral to settle on a specific value? If so, what is the value (to 3 decimal places)?
Solution.
a Exact Value Approximate Value
1 \(1-\dfrac{1}{e}\) \(0.6321205588\)
100 \(1-\dfrac{1}{e^{100}}\) 1
1000 \(1-\dfrac{1}{e^{1000}}\) 1
10000 \(1-\dfrac{1}{e^{10000}}\) 1
1
Example 7.8.2.
  1. Compute \(\ds \int_0^a e^{-x}\, dx\) in general
  2. Take the limit as \(a\to \infty\text{;}\) what is the interpretation of your answer?
Solution.
  1. \(\displaystyle \ds \int_0^a e^{-x}\, dx = 1-e^{-a}\)
  2. \(\ds \lim_{a\to \infty} (1-e^{-a}) = 1\)
    As the upper bound goes to \(\infty\text{,}\) the area under \(e^{-x}\) from 0 to a goes to 1.
Definition 7.8.3. Improper Integral (Type 1).
An improper integral of type 1 is an integral of the form
\begin{equation*} \ds \int_a^\infty f(x)\, dx \qquad \int_{-\infty}^a f(x)\, dx \qquad \int_{-\infty}^\infty f(x)\, dx \end{equation*}
provided that \(f(x)\) is continuous on the domain of integration.
Definition 7.8.4. Convergence/Divergence (Type 1).
An improper integral of type 1 is said to converge if the limits below exist:
\begin{equation*} \ds \lim_{t\to\infty} \int_a^t f(x)\, dx \qquad \lim_{t\to -\infty} \int_t^a f(x)\, dx \end{equation*}
If the limit does not exist or is infinite, then we say the integral is divergent
Example 7.8.5.
Determine if \(\ds \int_1^\infty \dfrac{1}{x^2}\, dx\) converges or diverges. If it converges, give its exact value.
Solution.
The integral converges to 1
Example 7.8.6.
Determine if \(\ds \int_1^\infty \dfrac{1}{x^3}\, dx\) converges or diverges. If it converges, give its exact value.
Solution.
The integral converges to \(\dfrac{1}{2}\)
Example 7.8.7.
Evaluate \(\ds \int_{\infty}^0 xe^x\, dx\)
Solution.
\(\ds \int_{-\infty}^0 xe^x\, dx = -1\)
Example 7.8.8.
Show that \(\ds \int_{-\infty}^{\infty} \dfrac{1}{1+x^2}\, dx = \pi\)
Solution.
Split the integral into two pieces:
\begin{equation*} \ds \int_{-\infty}^\infty \dfrac{1}{1+x^2}\, dx = \int_{-\infty}^0 \dfrac{1}{1+x^2}\, dx + \int_0^\infty \dfrac{1}{1+x^2}\, dx \end{equation*}
For the first piece, we compute:
\begin{align*} \ds \int_{-\infty}^0 \dfrac{1}{1+x^2}\, dx \amp = \lim_{t\to-\infty} \int_t^0 \dfrac{1}{1+x^2}\, dx\\ \ds \lim_{t\to-\infty} \int_t^0 \dfrac{1}{1+x^2}\, dx \amp = \lim_{t\to -\infty} \lrpar{\inv{\tan}(x)}\bigg\rvert_t^0\\ \ds \lim_{t\to -\infty} \lrpar{\inv{\tan}(x)}\bigg\rvert_t^0 \amp = \lim_{t\to -\infty} \lrpar{\inv{\tan}(0)-\inv{\tan}(t)}\\ \amp = \dfrac{\pi}{2} \end{align*}
For the second piece, we have a similar computation:
\begin{align*} \ds \int_0^\infty \dfrac{1}{1+x^2}\, dx \amp = \lim_{t\to\infty} \int_0^t \dfrac{1}{1+x^2}\, dx\\ \ds \lim_{t\to\infty} \int_0^t \dfrac{1}{1+x^2}\, dx \amp = \lim_{t\to \infty} \lrpar{\inv{\tan}(x)}\bigg\rvert_0^t\\ \ds \lim_{t\to \infty} \lrpar{\inv{\tan}(x)}\bigg\rvert_0^t \amp = \lim_{t\to \infty} \lrpar{\inv{\tan}(t)-\inv{\tan}(0)}\\ \amp = \dfrac{\pi}{2} \end{align*}
Summing the two pieces gives the answer of \(\pi\)
Example 7.8.9.
Does \(\ds \int_{-\infty}^0 \dfrac{1}{2-4x}\, dx\) converge or diverge? Why?
Solution.
The intgral diverges since the antiderivative involves a logarithm. The end behavior of the log function is unbounded, so the integral diverges.

Subsection 7.8.2 Pre-Class Activities

Example 7.8.10.

Use this space to write any questions you might have from the videos.
Solution.
Answers vary

Example 7.8.11.

Evaluate \(\ds \int_2^\infty e^{-5p}\, dp\)
Solution.
\(\ds \int_2^\infty e^{-5p}\, dp = \dfrac{1}{5}e^{-10}\)

Example 7.8.12.

Determine if \(\ds \int_{-\infty}^{\infty} xe^{-x^2}\, dx\) converges or diverges
Solution.
The integral converges to 0

Example 7.8.13.

Determine if \(\ds \int_{-\infty}^0 \dfrac{z}{z^4 + 4}\, dz\) converges or diverges.
Solution.
The integral converges to \(-\dfrac{\pi}{8}\)

Example 7.8.14.

Evaluate \(\ds \int_e^\infty \dfrac{1}{x(\ln x)^2}\, dx\)
Solution.
\(\ds \int_e^\infty \dfrac{1}{x(\ln x)^2}\, dx = 1\)

Example 7.8.15.

The integral \(\ds \int_0^\infty \sin^2\alpha\, d\alpha\) diverges. Compute the integral to see why. How could we come to the same conclusion without any computation?
Solution.
\(\ds \int \sin^2\alpha\, d\alpha = -\dfrac{1}{4}\sin 2\alpha + \dfrac{1}{2}\alpha\text{,}\) so when we take the limit of the linear term, we will always get \(\infty\) and a divergent integral (even though the limit of the trig term doesn’t exist).
Without integrating, we could also see that the integral would diverge because \(\sin^2\alpha \geq 0 \) so the area is always positive and only accumulates positive values.

Subsection 7.8.3 In Class

Example 7.8.16.

For what values of \(p\) does \(\ds \int_1^\infty \dfrac{1}{x^p}\, dx\) converge?
Solution.
It converges to \(\dfrac{1}{p-1}\) for \(p \gt 1\)

Example 7.8.17.

Evaluate \(\ds \int_0^\infty \dfrac{x^2}{\sqrt{1+x^3}}\, dx\)
Solution.
The integral diverges

Example 7.8.18.

Compute \(\ds \int_{-\infty}^0 2^r\, dr\)
Solution.
\(\ds \int_{-\infty}^0 2^r\, dr = \dfrac{1}{\ln 2}\)

Subsubsection 7.8.3.1 Type 2 Integrals

Definition 7.8.19. Improper Integral (Type 2).
An improper integral of type 2 is an integral of the form
\begin{equation*} \ds \int_a^b f(x)\, dx \end{equation*}
where \(f(x)\) has a discontinuity at either \(a\) or \(b\) or in \([a,b]\text{.}\)
Definition 7.8.20. Convergence/Divergence (Type 2).
An improper integral of type 2 is said to converge if the limits below exist:
\begin{equation*} \ds \lim_{t\to a^+} \int_t^b f(x)\, dx \qquad \lim_{t\to b^-} \int_a^t f(x)\, dx \end{equation*}
If the limit does not exist or is infinite, then we say the integral is divergent.
Example 7.8.21.
Find \(\ds \int_1^4 \dfrac{1}{\sqrt{x-1}}\, dx\)
Solution.
\(\ds \int_1^4 \dfrac{1}{\sqrt{x-1}}\, dx = 2\sqrt{3}\)
Example 7.8.22.
Determine if \(\ds \int_0^{\pi/2} \csc \theta \, d\theta\) converges or diverges.
Solution.
The integral diverges
Example 7.8.23.
A classmate claims that \(\ds \int_0^5 \dfrac{1}{x-3}\, dx = \ln 2 - \ln 3\text{.}\) Are they correct or incorrect? Why?
Solution.
They are incorrect. If the integral is computed using FTC 2 (disregarding the discontinuity), then one would get this value. However, accounting for the discontinuity shows that the integral diverges.
Example 7.8.24.
Compute \(\ds \int_0^1 \ln x\, dx\)
Solution.
The integral diverges
Example 7.8.25.
If \(f(t)\) is continuous on \((0,\infty)\text{,}\) we define the Laplace transform \(\mathcal{L}\) of \(f\) to be the function \(F\) defined as
\begin{equation*} \mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t)e^{-st}\, dt \end{equation*}
Compute \(\mathcal{L}[1]\) and \(\mathcal{L}[t]\text{.}\)
Solution.
\(\mathcal{L}[1] = \dfrac{1}{s}\) and \(\mathcal{L}[t]=\dfrac{1}{s^2}\)
Example 7.8.26.
Evaluate \(\ds \int_0^1 \dfrac{dx}{\sqrt{1-x^2}}\)
Solution.
\(\ds \int_0^1 \dfrac{dx}{\sqrt{1-x^2}} = \dfrac{\pi}{2}\)

Subsection 7.8.4 After Class Activities

Example 7.8.27.

Determine if the following converge or diverge:
  1. \(\displaystyle \ds \int_0^\infty \dfrac{1}{x^2 + x}\, dx\)
  2. \(\displaystyle \ds \int_1^\infty \dfrac{\ln x}{x^2}\, dx\)
  3. \(\displaystyle \ds \int_2^\infty \dfrac{dv}{v^2 + 2v-3}\)
  4. \(\displaystyle \ds \int_{-1}^2 \dfrac{x}{(x+1)^2}\, dx\)
  5. \(\displaystyle \ds \int_{-2}^3 \dfrac{1}{x^4}\, dx\)
  6. \(\displaystyle \ds \int_0^4 \dfrac{1}{x^2-x-2}\, dx\)
Solution.
  1. \(\ds \int_0^\infty \dfrac{1}{x^2 + x}\, dx\) diverges
  2. \(\displaystyle \ds \int_1^\infty \dfrac{\ln x}{x^2}\, dx=1\)
  3. \(\displaystyle \ds \int_2^\infty \dfrac{dv}{v^2 + 2v-3} = \dfrac{1}{4}\ln 5\)
  4. \(\ds \int_{-1}^2 \dfrac{x}{(x+1)^2}\, dx\) diverges
  5. \(\ds \int_{-2}^3 \dfrac{1}{x^4}\, dx\) diverges
  6. \(\ds \int_0^4 \dfrac{1}{x^2-x-2}\, dx =\) diverges