Skip to main content

Section 6.3 Logarithmic Functions

Subsection 6.3.1 Before Class

https://mymedia.ou.edu/media/6.3-1/1_d1xy6g44
Figure 52. Pre-Class Video 1

Subsubsection 6.3.1.1 Logarithmic Functions

Definition 6.3.1. Logarithmic Functions.
Let \(y = b^x\text{.}\) The inverse of this exponential function, called a logarithmic function, is defined using the relationship \(y = b^x \iff x = \log_b(y)\text{.}\)
Example 6.3.2.
Find the following:
  1. \(\displaystyle \log_4(16)\)
  2. \(\displaystyle \log_{10} (0.01)\)
  3. \(\displaystyle \log_3 (243)\)
  4. \(\displaystyle \log_5 (-5)\)
Solution.
  1. \(\displaystyle 2\)
  2. \(\displaystyle -2\)
  3. \(\displaystyle 5\)
  4. Does not exist
Cancellation Properties.
  • \(\log_b (b^x) = x\) for \(x\in \R\)
  • \(b^{\log_b(x)} = x\) for \(x > 0\)
Properties of Logarithmic Functions.
Let \(f(x) = \log_b(x)\text{.}\) Then, \(f(x)\) has the following properties:
  • Domain: \((0,\infty)\)
  • Range: \((-\infty,\infty)\)
  • If \(b\gt 1\text{,}\) then \(f(x)\) is increasing
  • If \(0\lt b\lt 1\text{,}\) then \(f(x)\) is decreasing
  • \(\displaystyle \ds \lim_{x\to \infty} f(x) = \begin{cases} \infty & \text{if } b\gt 1 \\ -\infty & \text{if } 0\lt b \lt 1 \end{cases}\)
  • \(\displaystyle \ds \lim_{x\to -\infty} f(x) = \begin{cases} -\infty & \text{if } b\gt 1 \\ \infty & \text{if } 0\lt b \lt 1 \end{cases}\)
Logarithm Rules.
For \(x,y\gt 0\) and \(r\in\R\text{,}\) the following properties hold:
  • \(\displaystyle \log_b(xy) = \log_b(x) + \log_b(y)\)
  • \(\displaystyle \log_b\lrpar{\dfrac{x}{y}} = \log_b(x) - \log_b(y)\)
  • \(\displaystyle \log_b(x^r) = r\log_b(x)\)
Example 6.3.3.
Use the rules of logarithms to write the following as a single logarithm:
  1. \(\displaystyle 2\log_3(x) + 3\log_3(y) - \log_3(z)\)
  2. \(\displaystyle \log_2(160) + \log_2(10)\)
Solution.
  1. \(\displaystyle 2\log_3(x) + 3\log_3(y) - \log_3(z) = \log_3\lrpar{\dfrac{xy}{z}}\)
  2. \(\displaystyle \log_2(160) + \log_2(10) = \log_2(1600)\)
Example 6.3.4.
Use the rules of logarithms to expand the given quantity:
  1. \(\displaystyle \log_9(\sqrt[3]{ab})\)
  2. \(\displaystyle \log_{10}\lrpar{\lrpar{\dfrac{x+1}{x-2}}^2}\)
Solution.
  1. \(\displaystyle \log_9(\sqrt[3]{ab}) = \dfrac{1}{3}\log_9(a) + \dfrac{1}{3}\log_9(b)\)
  2. \(\displaystyle \log_{10}\lrpar{\lrpar{\dfrac{x+1}{x-2}}^2} = 2\log_{10}(x+1) - 2\log_{10}(x-2)\)

Subsection 6.3.2 Pre-Class Activities

Example 6.3.5.

Find the exact value of the expression:
  1. \(\displaystyle \log_2(32)\)
  2. \(\displaystyle \log_{1.5}(2.25)\)
  3. \(\displaystyle \log_8 (60) - \log_8 (3) - \log_8 (5)\)
Solution.
  1. \(\displaystyle \log_2(32)=5\)
  2. \(\displaystyle \log_{1.5}(2.25)=2\)
  3. \(\displaystyle \log_8 (60) - \log_8 (3) - \log_8 (5) = \dfrac{2}{3}\)

Example 6.3.6.

Write \(\log_{10}(4) + \log_{10}(a) - \dfrac{1}{3}\log_{10} (a+1)\) as a single logarithm.
Solution.
\(\log_{10}(4) + \log_{10}(a) - \dfrac{1}{3}\log_{10} (a+1) = \log_{10}\lrpar{\dfrac{4a}{\sqrt[3]{a+1}}}\)

Example 6.3.7.

Can \(\log_b(x) + \log_c(y)\) be written as a single logarithm? Why or why not?
Solution.
Not with our current tools; the bases of the logarithms are different

Example 6.3.8.

Let \(f(x) = \log_5(8x-x^4)\text{.}\) Use log rules to completely simplify \(f(x)\text{,}\) then use limit laws to compute \(\ds \lim_{x\to 2^-} f(x)\text{.}\)
Solution.
\(f(x)\) simplifies as \(\log_5(x) +\log_5(x+3) +\log_5(x^2+3x+9)\text{,}\) and the limit is \(-\infty\)

Question 6.3.9.

Use this space to write any questions or thoughts you have from the videos.
Solution.
Answers vary

Subsection 6.3.3 In Class

Subsubsection 6.3.3.1 The Natural Logarithm

Definition 6.3.10. The Natural Logarithm.
The natural logarithm is the logarithm with base \(e\text{.}\) \(\log_e(x)\) is written as \(\ln x\)
Example 6.3.11.
Find \(x\) if \(e^x=5\)
Solution.
\(x=\ln 5\)
Example 6.3.12.
Sketch the graph of \(y=\ln(x-1) + 2\)
Example 6.3.13.
Solve the equation \(e^{3-5x}=10\)
Solution.
\(x=\dfrac{3-\ln(10)}{5}\)
Example 6.3.14.
Solve the equations for \(x\text{:}\)
  1. \(\displaystyle e^{7-4x} = 6\)
  2. \(\displaystyle \ln(3x-10) = 2\)
  3. \(\displaystyle \ln(x^2-1) = 3\)
  4. \(\displaystyle \log_2(mx) = c\)
  5. \(\displaystyle e-e^{-2x} = 1\)
  6. \(\displaystyle 10(1+e^{-x})^{-1} = 3\)
  7. \(\displaystyle e^{2x} - e^x - 6 = 0\)
Solution.
  1. \(\displaystyle x=\dfrac{7-\ln 6}{4}\)
  2. \(\displaystyle x=\dfrac{10+e^2}{3}\)
  3. \(\displaystyle x = \pm \sqrt{e^3+1}\)
  4. \(\displaystyle x=\dfrac{2^c}{m}\)
  5. \(\displaystyle x=-\dfrac{\ln(e-1)}{2}\)
  6. \(\displaystyle x=-\ln\lrpar{\dfrac{7}{3}}\)
  7. \(\displaystyle x=\ln 3\)
Example 6.3.15.
Find the following limits:
  1. \(\displaystyle \ds\lim_{x\to 3^+} \ln(x^2-9)\)
  2. \(\displaystyle \ds\lim_{x\to 2^-} \log_5(8x-x^4)\)
  3. \(\displaystyle \ds\lim_{x\to 0^+} \ln (\sin x)\)
Solution.
  1. \(\displaystyle \ds\lim_{x\to 3^+} \ln(x^2-9)=-\infty\)
  2. \(\displaystyle \ds\lim_{x\to 2^-} \log_5(8x-x^4)=-\infty\)
  3. \(\displaystyle \ds\lim_{x\to 0^+} \ln (\sin x)=-\infty\)
Example 6.3.16.
If \(f(x) = \sqrt{3-e^{2x}}\text{,}\) find the domain of \(f\text{,}\) the inverse function \(\inv{f}\text{,}\) and the domain of \(\inv{f}\text{.}\)
Solution.
The domain is \(\left(-\infty,\dfrac{1}{2}\ln 3\right]\text{,}\) \(\inv{f}(x) = \dfrac{1}{2}\ln(3-x^2)\text{,}\) and the domain of \(\inv{f}(x)\) is \([0,\infty)\)
Example 6.3.17.
Find the inverse of the function \(g(x) = \log_4(x^3 + 2)\text{.}\)
Solution.
\(\inv{g}(x) = \sqrt[3]{4^x-2}\)
Example 6.3.18.
Where is the function \(f(x) = e^{3x} - e^x\) increasing?
Solution.
\(\lrpar{\dfrac{1}{2}\ln\lrpar{\dfrac{1}{3}},\infty}\)
Example 6.3.19.
Find an equation of the tangent to the curve \(y = e^{-x}\) that is perpendicular to the line \(2x-y = 8\text{.}\)
Solution.
\(y=-\dfrac{1}{2}x + \dfrac{1}{2}\ln 2 + \dfrac{1}{2}\)
Change of Base Formula.
For any positive number \(b\) (\(b\neq 1\)), we have
\begin{equation*} \log_b x = \dfrac{\log_c x}{\log_c b} \end{equation*}
Example 6.3.20.
Write the logarithm \(\log_3(7)\) in terms of the natural logarithm.
Solution.
\(\log_3(7) = \dfrac{\ln 7}{\ln 3}\)
Example 6.3.21.
Use the change of base formula to write \(\dfrac{1}{\log_8 6}\) as a single logarithm.
Solution.
\(\dfrac{1}{\log_8 6} = \log_6(8)\)

Subsection 6.3.4 After Class Activities

Example 6.3.22.

Solve the equation \(\ln x + \ln (x-1) = 1\)
Solution.
\(x=\dfrac{-1\pm \sqrt{1+4e}}{2}\)

Example 6.3.23.

Find the limits:
  1. \(\displaystyle \ds \lim_{x\to \infty}\lrpar{\ln(1+x^2) - \ln(1+x)}\)
  2. \(\displaystyle \ds \lim_{x\to \infty}\lrpar{\ln(2+x) - \ln(1+x)}\)
Solution.
  1. \(\displaystyle \ds \lim_{x\to \infty}\lrpar{\ln(1+x^2) - \ln(1+x)}=\infty\)
  2. \(\displaystyle \ds \lim_{x\to \infty}\lrpar{\ln(2+x) - \ln(1+x)}=0\)

Example 6.3.24.

Find the domain of the function \(\log_2(x^2 + 3x)\)
Solution.
\((0,\infty)\)

Example 6.3.25.

Find the domain of the function \(f(x) = \ln (2+\ln x)\text{,}\) the inverse function \(\inv{f}\text{,}\) and the domain of \(\inv{f}\text{.}\)
Solution.
The domain is \((e^{-2},\infty)\text{,}\) \(\inv{f}(x)=e^{e^x-2}\text{,}\) and the domain is \((-\infty,\infty)\)

Example 6.3.26.

If \(f(x) = 3^{2x-4}\text{,}\) find \(\inv{f}\text{.}\)
Solution.
\(\inv{f}(x) = \dfrac{\log_3(x)+4}{2}\)

Example 6.3.27.

On what interval is the curve \(y = 2e^x - e^{-3x}\) concave down?
Solution.
\(\lrpar{-\infty, \dfrac{1}{4}\ln\lrpar{\dfrac{9}{2}}}\)