Note first that
\begin{equation*}
|x| = \begin{cases}-x & x \lt 0 \\ x & x\geq 0\end{cases}
\end{equation*}
Then, we have two cases:
\begin{equation*}
\ln |x| = \begin{cases} \ln (-x) & x \lt 0 \\ \ln (x) & x\geq 0 \end{cases}
\end{equation*}
When we take the derivative, we have
\begin{equation*}
\dfrac{d}{dx}[\ln |x|] = \begin{cases} \dfrac{d}{dx} [\ln (-x)] & x \lt 0 \\ \dfrac{d}{dx}[\ln (x)] & x\geq 0 \end{cases}
\end{equation*}
In the first branch, since \(x\lt 0\text{,}\) \(\ln(-x) = \ln (x)\text{.}\) So,
\begin{equation*}
\dfrac{d}{dx} [\ln (-x)] = \dfrac{d}{dx} [\ln (x)] = \dfrac{1}{x}
\end{equation*}
The second branch agrees, namely that
\begin{equation*}
\dfrac{d}{dx} [\ln (x)] = \dfrac{1}{x}
\end{equation*}
So for any value of \(x\text{,}\) the statement holds:
\begin{equation*}
\dfrac{d}{dx} [\ln |x|] = \dfrac{1}{x}
\end{equation*}