Skip to main content

Section 7.3 Trigonometric Substitution

Subsection 7.3.1 Before Class

https://mymedia.ou.edu/media/7.3-1/1_ymu3wt20
Figure 61. Pre-Class Video 1
https://mymedia.ou.edu/media/7.3-2/1_j9pld8uq
Figure 62. Pre-Class Video 2

Subsubsection 7.3.1.1 The Substitutions

Example 7.3.1.
Use trigonometry to complete the following reference triangles:
Three triangles used to define the trigonometric substitutions. On the left, the triangle for the tangent substitution; in the middle, the triangle for the sine substitution; on the right, the triangle for the secant substitution.
Example 7.3.2.
Let \(f(x) = \dfrac{1}{16+x^2}\)
  1. Consider \(\ds \int f(x)\, dx\text{.}\) Why do none of our previous integration techniques work here?
  2. Refer to the example at the top of the page. Which triangle has an expression similar to the radicand in \(f(x)\text{?}\) Write the substitution below.
  3. Treat the substitution you chose in part (b) like a \(u-\)substitution. Make the appropriate substitutions into the integral \(\ds \int \dfrac{1}{16+x^2}\, dx\text{,}\) and complete the integration.
Solution.
  1. Answers vary, but the idea is that we don’t have an appropriate rule for the pattern
  2. \(\displaystyle x = a\tan \theta\)
  3. If \(x = 4\tan \theta\text{,}\) then \(dx = 4\sec^2\theta\, d\theta\text{.}\) Anywhere we see \(x\text{,}\) we will replace with \(4\tan\theta\text{.}\)
    Now, we have
    \begin{equation*} \ds \int \dfrac{1}{16 + (4\tan\theta)^2}\, (4\sec^2\theta\, d\theta) \end{equation*}
    Simplifying, we have
    \begin{equation*} \ds \int \dfrac{4\sec^2\theta}{16(1+\tan^2\theta)}\, d\theta \end{equation*}
    Using identities, we arrive at
    \begin{equation*} \ds \dfrac{1}{4}\int \dfrac{\sec^2\theta}{\sec^2\theta}\, d\theta = \dfrac{1}{4}\int d\theta \end{equation*}
    Integrating gives
    \begin{equation*} \ds \dfrac{1}{4}\int d\theta = \dfrac{1}{4}\theta + C \end{equation*}
    However, our original variable was \(x\text{,}\) not \(\theta\text{;}\) since we declared \(x = 4\tan \theta\text{,}\) we rearrange to get \(\theta = \inv{\tan}\lrpar{\dfrac{x}{4}}\text{.}\) So, our answer becomes
    \begin{equation*} \dfrac{1}{4}\inv{\tan}\lrpar{\dfrac{x}{4}} + C \end{equation*}
Example 7.3.3.
Compute \(\ds \int \dfrac{\sqrt{9-x^2}}{x^2}\, dx\)
Solution.
\(\ds \int \dfrac{\sqrt{9-x^2}}{x^2}\, dx = -\dfrac{\sqrt{9-x^2}}{x} - \inv{\sin}\lrpar{\dfrac{x}{3}} + C\)
Example 7.3.4.
Evaluate \(\ds \int \dfrac{\sqrt{x^2-9}}{x}\, dx\)
Solution.
\(\ds \int \dfrac{\sqrt{x^2-9}}{x}\, dx = \sqrt{x^2-9} - 3\inv{\sec}\lrpar{\dfrac{x}{3}} + C\)

Subsection 7.3.2 Pre-Class Activities

Example 7.3.5.

Use this space to write any questions you have from the videos.
Solution.
Answers vary

Example 7.3.6.

Compute \(\ds \int_0^1 \dfrac{3}{x^2 + 4}\, dx\)
Solution.
\(\ds \int_0^1 \dfrac{3}{x^2 + 4}\, dx = \dfrac{3}{2}\inv{\tan}\lrpar{\dfrac{1}{2}}\)

Example 7.3.7.

Compute \(\ds \int \dfrac{x}{x^2 - 4}\, dx\text{.}\) Is a trigonometric substitution necessary here? Why or why not?
Solution.
\(\ds \int \dfrac{x}{x^2 - 4}\, dx = \dfrac{1}{2}\ln |x^2-4| + C\text{.}\) A trig substitution isn’t necessary here, as we can use a u-substitution.

Example 7.3.8.

Compute \(\ds \int \dfrac{1}{x^2\sqrt{4-x^2}}\, dx\) using the substitution \(x = 2\sin \theta\)
Solution.
\(\ds \int \dfrac{1}{x^2\sqrt{4-x^2}}\, dx = -\dfrac{\sqrt{4-x^2}}{4x} + C\)

Question 7.3.9.

Using the previous examples as guideposts, fill out the following table:
If you see an integrand involving Try a substitution using
Solution.
If you see an integrand involving Try a substitution using
\(x^2 + a^2\) \(x = a\tan\theta\)
\(a^2-x^2\) \(x = a\sin\theta\)
\(x^2-a^2\) \(x = a\sec\theta\)

Subsection 7.3.3 In Class

Subsubsection 7.3.3.1 Examples

Example 7.3.10.
Compute \(\ds \int \dfrac{dx}{x^2\sqrt{x^2 + 9}}\)
Solution.
\(\ds \int \dfrac{dx}{x^2\sqrt{x^2 + 9}} = -\dfrac{1}{9}\lrpar{\dfrac{\sqrt{x^2+9}}{x}} + C\)
Example 7.3.11.
Evaluate \(\ds \int \dfrac{16x^3}{(4x^2+9)^{3/2}}\, dx\)
Solution.
\(\ds \int \dfrac{16x^3}{(4x^2+9)^{3/2}}\, dx = \sqrt{4x^2+9} + \dfrac{9}{\sqrt{4x^2+9}} + C\)
Example 7.3.12.
Compute \(\ds \int \dfrac{\sqrt{x^2-1}}{x^4}\, dx\)
Solution.
\(\ds \int \dfrac{\sqrt{x^2-1}}{x^4}\, dx = \dfrac{1}{3}\lrpar{\dfrac{\sqrt{x^2-1}}{x}}^3 + C\)
Example 7.3.13.
Find \(\ds \int \dfrac{x}{\sqrt{3-2x-x^2}}\, dx\)
Solution.
\(\ds \int \dfrac{x}{\sqrt{3-2x-x^2}}\, dx = -\sqrt{4-(x+1)^2} - \inv{\sin}\lrpar{\dfrac{x+1}{2}}+C\)
Example 7.3.14.
Evaluate \(\ds \int \dfrac{dx}{(x^2-1)^{3/2}}\)
Solution.
\(\ds \int \dfrac{dx}{(x^2-1)^{3/2}} = -\dfrac{x}{\sqrt{x^2-1}} + C\)
Example 7.3.15.
Show that \(\ds \int_0^a x^2\sqrt{a^2-x^2}\, dx = \dfrac{\pi}{16}a^4\)
Solution.
Set \(x = a\sin\theta\text{.}\) Then, \(dx = a\cos\theta\text{.}\) Making our substitutions, we get
\begin{equation*} \ds \int_0^a a^2\sin^2\theta \sqrt{a^2-a^2\sin\theta}\, (a\cos\theta)\, d\theta \end{equation*}
After some simplification, we get
\begin{equation*} \ds \int_0^a a^4\sin^2\theta\cos^2\theta\, d\theta \end{equation*}
Using the double angle identity for sine, we have
\begin{equation*} \ds \int_0^a a^4 \lrpar{\dfrac{1}{2}\sin 2\theta}^2\, d\theta = \dfrac{a^4}{4}\int \sin^2 2\theta\, d\theta \end{equation*}
Now use a power reducing identity:
\begin{equation*} \ds \dfrac{a^4}{4}\int_0^a \dfrac{1}{2} (1-\cos 4\theta)\, d\theta \end{equation*}
More simplification gives
\begin{equation*} \ds \dfrac{a^4}{8} \int_0^a 1-\cos 4\theta\, d\theta \end{equation*}
Integrating and using double angle identities gives
\begin{equation*} \dfrac{a^4}{8}\lrpar{\theta - \dfrac{1}{4}\sin 4\theta}\bigg \rvert_{x = 0}^{x = a} \end{equation*}
After reduction, it becomes clear that the sine term is zero at the endpoints, so the integral becomes
\begin{equation*} \dfrac{a^4}{8}\lrpar{\inv{\sin}\lrpar{\dfrac{x}{a}}}\bigg\rvert_0^a \end{equation*}
Evaluating gives our answer.
Example 7.3.16.
Evaluate \(\ds \int \sqrt{x^2 + 2x}\, dx\)
Solution.
\(\ds \int \dfrac{x}{\sqrt{x^2 + 1}}\, dx = \dfrac{1}{2}(x+1)\sqrt{(x+1)^2-1} - \dfrac{3}{2}\ln |x+1 + \sqrt{(x+1)^2-1}| + C\)
Example 7.3.17.
Compute \(\ds \int \dfrac{x}{\sqrt{x^2 + 1}}\, dx\)
Solution.
\(\ds \int \dfrac{x}{\sqrt{x^2 + 1}}\, dx = \sqrt{x^2+1} + C\)

Subsection 7.3.4 After Class Activities

Example 7.3.18.

Use trig substitution to prove that the area of the ellipse \(\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1\) is \(\pi ab\text{,}\) where \(a\) is the length of the major axis and \(b\) is the length of the minor axis.
Solution.
Write the ellipse in terms of \(y\) alone first; this gives \(y = \pm \dfrac{b}{a}\sqrt{a^2-x^2}\text{.}\) We can take the positive root, integrate a quarter of the ellipse, and multiply the resulting area by 4.
Now, the area will be given by \(\ds \int_0^a \dfrac{b}{a}\sqrt{a^2-x^2}\, dx\text{.}\) Use the substitution \(x = a\sin\theta\text{;}\) then, \(dx = a\cos\theta\, d\theta\text{.}\) Then
\begin{align*} \ds \int_0^a \dfrac{b}{a}\sqrt{a^2-x^2}\, dx \amp = \dfrac{b}{a}\int_0^a \sqrt{a^2-a^2\sin^2\theta} (a\cos\theta)\, d\theta\\ \amp = \ds ab\int_0^a \cos^2\theta\, d\theta\\ \amp = \ds \dfrac{ab}{2}\int_0^a 1 + \cos 2\theta\, d\theta\\ \amp = \dfrac{ab}{2}\lrpar{\theta + \dfrac{1}{2}\sin 2\theta}\bigg\rvert_0^a\\ \amp = \dfrac{ab}{2}\lrpar{\inv{\sin}\lrpar{\dfrac{x}{a} + \dfrac{x\sqrt{a^2-x^2}}{a^2}}}\bigg\rvert_0^a\\ \amp = \dfrac{\pi ab}{4} \end{align*}
Multiplying by 4 gives the area, \(\pi ab\)

Example 7.3.19.

Evaluate \(\ds \int_{\sqrt{2}/3}^{2/3} \dfrac{dx}{x^5\sqrt{9x^2-1}}\)
Solution.
\(\ds \int_{\sqrt{2}/3}^{2/3} \dfrac{dx}{x^5\sqrt{9x^2-1}} = \dfrac{81}{64}(7\sqrt{3}-16 + 2\pi)\)

Example 7.3.20.

Compute \(\ds \int_0^1 \sqrt{x-x^2}\, dx\)
Solution.
\(\ds \int_0^1 \sqrt{x-x^2}\, dx = \dfrac{\pi}{8} \)