Skip to main content

Section 2.5 The Chain Rule

Subsection 2.5.1 Before Class

https://mymedia.ou.edu/media/2.5-1/1_wrjdpiy3
Figure 18. Pre-Class Video 1

Subsubsection 2.5.1.1 Review: Composition of Functions

Example 2.5.1.
If \(f(u)= \sqrt{u}\) and \(u(x) = x^2 + 1\text{,}\) find the composition \((f\circ u)(x)\text{.}\)
Solution.
\((f\circ u)(x) = \sqrt{x^2+1}\)
Example 2.5.2.
If \(f(x) = \sqrt{x}\) and \(g(x) = \sqrt{2-x}\text{,}\) find
  1. \(\displaystyle f\circ g\)
  2. \(\displaystyle g\circ f\)
  3. \(\displaystyle f\circ f\)
  4. \(\displaystyle g\circ g\)
Solution.
  1. \(\displaystyle f\circ g = \sqrt{\sqrt{2-x}}\)
  2. \(\displaystyle g\circ f = \sqrt{2-\sqrt{x}}\)
  3. \(\displaystyle f\circ f = \sqrt{\sqrt{x}}\)
  4. \(\displaystyle g\circ g = \sqrt{2-\sqrt{2-x}}\)
Example 2.5.3.
Let \(k(x) = \cos 2x\text{.}\) Find \(f,g\) such that \(k(x) = f(g(x))\text{.}\)
Solution.
\(f(x) = \cos x\) and \(g(x) = 2x\)
Example 2.5.4.
Let \(f(x) = \sec^2 (x^2 + 9)\text{.}\) Find functions \(a,b,c\) such that \(f(x) = (a\circ b\circ c)(x)\)
Solution.
\(a(x) = x^2\text{,}\) \(b(x) = \sec x\text{,}\) and \(c(x) = x^2+9\)

Subsubsection 2.5.1.2 The Chain Rule

The chain rule relies on being able to decompose a function into smaller pieces, and doing things in the right order.
Example 2.5.6.
Let \(k(x) = \cos 2x\text{.}\) Find \(k'(x)\) using Example 2.5.3.
Solution.
\(k'(x) = -2\sin 2x\)
Example 2.5.7.
Let \(g(x) = \sin 4x\text{.}\) Find \(g'(x)\text{.}\)
Solution.
\(g'(x) = 4\cos 4x\)
Example 2.5.8.
Let \(f(x) = \sec^2(x^2+9)\text{.}\) Find \(f'(x)\) using Example 2.5.4.
Solution.
\(f'(x) = 2\sec(x^2+9)\cdot \sec(x^2+9)\tan(x^2+9)\cdot 2x\)

Subsection 2.5.2 Pre-Class Activities

Example 2.5.9.

You are given a composite function. Identify the inner function \(u = g(x)\) and the outer function \(y = f(u)\text{.}\)
  1. \(\displaystyle \sqrt[3]{1+4x}\)
  2. \(\displaystyle \sin (\cot x)\)
  3. \(\displaystyle (5x^6 + 2x^3)^4\)
Solution.
  1. \(y = f(u) = \sqrt[3]{u}\) and \(u = g(x) = 1+4x\)
  2. \(y = f(u) = \sin u\) and \(u = g(x) = \cot x\)
  3. \(y = f(u) = u^4\) and \(u = g(x) = 5x^6 + 2x^3\)

Example 2.5.10.

Set \(h(x) = \sin (x^2)\text{.}\) Identify the inner function \(u = g(x)\) and the outer function \(y = f(u)\text{.}\) Then, find the derivative \(h'(x)\text{.}\)
Solution.
\(u = g(x) = x^2\) and \(y = f(u) = \sin u\text{;}\) \(f'(x) = 2x\cos(x^2)\)

Example 2.5.11.

Set \(k(t) = \sin^2(t)\text{.}\) Identify the inner function \(u = g(t)\) and the outer function \(y = f(u)\text{.}\) Then, find the derivative \(k'(t)\text{.}\)
Solution.
\(u = g(t) = \sin t\) and \(y = f(u) = u^2\text{;}\) \(k'(t) = 2\sin t\cos t\)

Subsection 2.5.3 In Class

Question 2.5.12.

If \(h(x) = f(g(x))\text{,}\) use the chain rule to write \(h'(x)\) in prime notation and Leibniz notation.
Solution.
In prime notation, \(h'(x) = f'(g(x))\cdot g'(x)\text{.}\) In Leibniz notation, \(\dfrac{dh}{dx} = \dfrac{df}{dg}\cdot \dfrac{dg}{dx}\)

Example 2.5.13.

Let \(f(x) = \sqrt{x^2 + 1}\text{.}\) Find \(f'(x)\text{.}\)
Solution.
\(f'(x) = \dfrac{1}{2}(x^2+1)^{-1/2}\cdot 2x\)

Example 2.5.14.

Let \(g(x) = \cos (x^2)\text{.}\) Find \(g'(x)\text{.}\)
Solution.
\(g'(x) = -2x\sin(2x)\)

Example 2.5.15.

Find the derivative of \(k(t) = (2t+1)^5(t^3-t+1)^4\)
Solution.
\(k'(t) = 5(2t+1)^4(2)(t^3-t+1)^4 + 4(t^3-t+1)^3(3t^2-1)(2t+1)^5\)

Example 2.5.16.

Let \(h(x) = \sin^2(\sqrt{x^2-1})\text{.}\) Find \(h'(x)\text{.}\)
Solution.
\(h'(x) = 2\sin\sqrt{x^2-1}\cdot \cos\sqrt{x^2-1}\cdot \dfrac{1}{2}(x^2-1)^{-1/2}\cdot 2x\)

Example 2.5.17.

Find the first derivative of \(F(x) = (5x^5+2x^3)^4\)
Solution.
\(F'(x) = 4(5x^5+2x^3)^3(25x^4+6x^2)\)

Example 2.5.18.

Find the first derivative of \(h(t) = (2-\sin t)^{3/2}\)
Solution.
\(h'(t) = \dfrac{3}{2}(2-\sin t)^{1/2}\cdot (-\cos t)\)

Example 2.5.19.

Find the first derivative of \(y=\dfrac{1}{(\cos t + \tan t)^2}\)
Solution.
\(\dfrac{dy}{dx} = -2(\cos t + \tan t)^{-3}(-\sin t + \sec^2t)\)

Example 2.5.20.

Find the first derivative of \(h(\theta) = \tan (\theta^2\sin\theta)\)
Solution.
\(h'(\theta) = \sec^2(\theta^2\sin\theta)\cdot (2\theta\sin\theta + \theta^2\cos\theta)\)

Example 2.5.21.

Find the first derivative of \(y=\lrpar{\dfrac{1-\cos 2x}{1+\sin 2x}}^3\)
Solution.
\(\dfrac{dy}{dx} = 3\lrpar{\dfrac{1-\cos 2x}{1+\sin 2x}}^2\lrpar{\dfrac{(1+\sin2x)(2\sin2x)-(1-\cos2x)(2\cos 2x)}{(1+\sin 2x)^2}}\)

Example 2.5.22.

Find the first derivative of \(f(t) = \sqrt{t+\sqrt{t}}\)
Solution.
\(f'(t) = \dfrac{1}{2}(t+t^{1/2})^{-1/2}\lrpar{1+\dfrac{1}{2}t^{-1/2}}\)

Example 2.5.23.

Find the first derivative of \(r(x) = (x^2+1)^3(x^2+2)^6\)
Solution.
\(r'(x) = 3(x^2+1)^2(2x)(x^2+2)^6 + 6(x^2+2)(2x)(x^2+1)^3\)

Example 2.5.24.

Find the first derivative of \(y = \sqrt[5]{\dfrac{x}{x-1}}\)
Solution.
\(\dfrac{dy}{dx} = \dfrac{1}{5}\lrpar{\dfrac{x}{x-1}}^{-4/5}\lrpar{\dfrac{-1}{(x-1)^2}}\)

Example 2.5.25.

Find the first derivative of \(z = \sqrt{\sin(1+x^2)}\)
Solution.
\(\dfrac{dz}{dx} = \dfrac{1}{2}(\sin(1+x^2))^{-1/2}\cdot \cos(1+x^2)(2x)\)

Example 2.5.26.

Find the first derivative of \(A(t) = \dfrac{t^2}{\sqrt{t^3+1}}\)
Solution.
\(A'(t) = \dfrac{(2t)(\sqrt{t^3+1})-(t^2)\lrpar{\dfrac{1}{2}(t^3+1)^{-1/2}(3t^2)}}{t^3+1}\)

Example 2.5.27.

Find the first derivative of \(f(x) = \cos^4(\tan^3(x))\)
Solution.
\(f'(x)=4\cos^3(\tan^3x)\cdot -\sin(\tan^3x)\cdot 3\tan^2x\cdot\sec^2x\)

Example 2.5.28.

Find the first derivative of \(y = \cos\sqrt{\sin(\tan\pi x)}\)
Solution.
\(\dfrac{dy}{dx} = -\sin\sqrt{\sin(\tan\pi x)}\cdot \dfrac{1}{2}(\sin(\tan\pi x))^{-1/2}(\cos(\tan\pi x))\cdot \sec^2(\pi x)\cdot \pi\)

Example 2.5.29.

Find an equation of the tangent line to the curve \(y = \sqrt{1+x^3}\) at the point \((2,3)\)
Solution.
\(y = 2x-1\)

Example 2.5.30.

Let \(f(x) = [g(\cos x)]^2\text{.}\) Write an expression for \(f'(x)\text{.}\)
Solution.
\(f'(x) = 2g(\cos x)\cdot g'(\cos x)\cdot -\sin x\)

Example 2.5.31.

If \(h(x) = \sqrt{4+3f(x)}\text{,}\) \(f(1) = 7\text{,}\) and \(f'(1) = 4\text{,}\) find \(h'(1)\text{.}\)
Solution.
\(h'(1) = \dfrac{6}{5}\)

Example 2.5.32.

If \(g(x) = \sqrt{f(x)}\text{,}\) where \(f\) is the function shown, evaluate \(g'(3)\text{.}\)
Solution.
\(g'(3) = -\dfrac{1}{2\sqrt{3}}\)

Subsection 2.5.4 After Class Activities

Example 2.5.33.

Find the first and second derivatives of \(y = \sin (\cos 4\theta)\)
Solution.
\(\dfrac{dy}{dx} = -4\sin(4\theta)\cdot cos(\cos 4\theta)\) and \(\dfrac{d^2y}{dx^2} = -16\cos(4\theta)\cdot \cos(\cos 4\theta) -16\sin^2(4\theta)\cdot \sin (\cos 4\theta)\)

Example 2.5.34.

Find the first and second derivatives of \(y = \dfrac{4x}{\sqrt{x+1}}\)
Solution.
\(\dfrac{dy}{dx} = \dfrac{2x+4}{(x+1)^{3/2}}\) and \(\dfrac{d^2y}{dx^2} = \dfrac{2(x+1)^{3/2}-(2x+4)\lrpar{\dfrac{3}{2}(x+1)^{1/2}}}{(x+1)^3}\)

Example 2.5.35.

Find \(D^{35} \sin \pi x\)
Solution.
\(D^{35}[\sin \pi x] = -\pi^{35}\cos\pi x\)

Example 2.5.36.

A table of values for \(f,g,g'\) and \(g'\) is given:
\(x\) \(f(x)\) \(g(x)\) \(f'(x)\) \(g'(x)\)
\(1\) \(3\) \(2\) \(4\) \(6\)
\(2\) \(1\) \(8\) \(5\) \(7\)
\(3\) \(7\) \(2\) \(7\) \(9\)
  1. Find \(h'(1)\text{,}\) if \(h(x) = f(g(x))\)
  2. Find \(H'(1)\text{,}\) if \(H(x) = g(f(x))\)
Solution.
  1. Find \(h'(1) = 30\)
  2. Find \(H'(1) = 36\)

Example 2.5.37.

Suppose \(f\) is differentiable on \(\R\text{,}\) and \(A\) is a real number. Let \(F(x) = f(x^A)\) and \(G(x) = [f(x)]^A\text{.}\) Find expressions for \(F'(x)\) and \(G'(x)\text{.}\)
Solution.
\(F'(x) = f'(x^A)\cdot Ax^{A-1}\) and \(G'(x) = A[f(x)]^{A-1}\cdot f'(x)\)

Example 2.5.38.

The chain rule is often a source of confusion and frustration for students in (and beyond) calculus. What do you think will help the chain rule stick out in your mind?
Solution.
Answers vary